## A. Appendix Appendix

## A.1. Basic facts

It is convenient to introduce some notation for symmetric and Hermitian matrices. A real matrix $A$ is symmetric if $A=A^{T}$. The sets of all $n \times n$ symmetric matrices will be denoted by $\mathbb{S}^{n}$. A complex matrix is Hermitian if $A=A^{*}=\bar{A}^{T}$ where the bar denotes the complex conjugate of each entry in $A$. The sets of all $n \times n$ Hermitian matrices will be denoted by $\mathbb{H}^{n}$.
Definition A.1. Let $A$ be an arbitrary matrix. $A_{\perp}$ denotes a matrix with the following properties.

$$
\begin{equation*}
\operatorname{Ker}\left(A_{\perp}\right)=\mathbf{I m}(A) \quad \text { and } \quad A_{\perp} A_{\perp}^{*}>0, \tag{A.1}
\end{equation*}
$$

or with other words $A_{\perp}^{*}$ is an arbitrary basis matrix in $\operatorname{Ker}\left(A^{*}\right)$.
Note that $A_{\perp}$ exists if and only if A has linearly dependent rows. Also note that, for a given $A$ is not unique, but throughout this paper, any choice is acceptable. And finally, it is obvious that $A_{\perp} A=0$, this latter property justifies our notation.

Definition A.2. Let A be an arbitrary matrix. $A_{\dashv}$ denotes arbitrary basis matrix in $\operatorname{Ker}(A)$. Note that $A_{\dashv}$ exists if and only if $A$ has linearly dependent columns. It is obvious that $A A_{\dashv}=0$ and that $A_{\dashv}^{*} A_{\dashv}>0$.

## A.1.1. The Moore-Penrose Pseudo-inverse

Definition A.3. The pseudo-inverse $A^{\dagger}$ of an $m \times n$ matrix $A$ (whose entries can be real or complex numbers) is defined as the unique $n \times m$ matrix
satisfying all of the following four criteria:

$$
\begin{align*}
A A^{\dagger} A & =A  \tag{A.2}\\
A^{\dagger} A A^{\dagger} & =A^{\dagger}  \tag{A.3}\\
\left(A A^{\dagger}\right)^{*} & =A A^{\dagger}  \tag{A.4}\\
\left(A^{\dagger} A\right)^{*} & =A^{\dagger} A \tag{A.5}
\end{align*}
$$

## Properties:

$A^{\dagger}$ exists and is unique for any matrix $A$.
If $A$ is invertible then $A^{\dagger}=A^{-1}$
$A^{\dagger}$ of a zero matrix is its transpose.
$\left(A^{\dagger}\right)^{\dagger}=A$.
$(\alpha A)^{\dagger}=\alpha^{-1} A^{\dagger} \quad$ for $\quad \alpha \neq 0$
$A A^{\dagger}$ orthogonal projector onto $\mathbf{I m}(A)$
$A^{\dagger} A$ orthogonal projector onto $\mathbf{I m}\left(A^{*}\right)$
$\left(I-A^{\dagger} A\right)$ orthogonal projector onto $\operatorname{Ker}(A)$.
$\operatorname{ker}\left(A^{\dagger}\right)=(\mathbf{I m}(A))^{\perp}$
$\operatorname{im}\left(A^{\dagger}\right)=(\operatorname{Ker}(A))^{\perp}$

If the columns of $A$ are linearly independent, then $A^{*} A$ is invertible and:

$$
A^{\dagger}=\left(A^{*} A\right)^{-1} A^{*} \quad \text { case } \quad m>n
$$

It follows that $A^{\dagger}$ is a left inverse of $A$, i.e., $A^{\dagger} A=I$.
If the rows of $A$ are linearly independent, then $A A^{*}$ is invertible and:

$$
A^{\dagger}=A^{*}\left(A A^{*}\right)^{-1} \quad \text { case } \quad m<n
$$

It follows that $A^{\dagger}$ is a right inverse of $A$, i.e., $A A^{\dagger}=I$.

## A.1.2. Singular value decomposition

Theorem A. 4 (SVD). Suppose $A$ is an $m \times n$ matrix whose entries come from the field $\mathbb{F}$, which is either the field of real numbers or the field of complex numbers. Then there exists a factorization of the form

$$
A=U \Sigma V^{*}
$$

where $U$ is an $m \times m$ unitary matrix over $\mathbb{F}$, the matrix $\Sigma$ is $m \times n$ diagonal matrix with nonnegative real numbers on the diagonal, and $V^{*}$ is an $n \times$ $n$ unitary matrix over $\mathbb{F}$. Such a factorization is called a singular-value decomposition of $A$. A common convention is to order the diagonal entries $\Sigma_{i, i}$ in non-increasing fashion. In this case, the diagonal matrix $\Sigma$ is uniquely determined by $A$ (though the matrices $U$ and $V$ are not). The diagonal entries of $\Sigma$ are known as the singular values of $A$. More precisely $\Sigma$ has the form

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}\right)
$$

where $p=\min (m, n)$ and

$$
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{p} \geq 0
$$

Remark A. 5 (Pseudo-inverse). The singular value decomposition can be used for computing the pseudo-inverse of a matrix. Indeed, the pseudoinverse of the matrix $A$ with singular value decomposition $A=U \Sigma V^{*}$ is

$$
A^{\dagger}=V \Sigma^{\dagger} U^{*}
$$

where $\Sigma^{\dagger}$ is the pseudo-inverse of $\Sigma$ with every nonzero entry replaced by its reciprocal.

## A.1.3. Schur complement and Schur lemma

Lemma A. 6 (Schur Decomposition). Suppose A or D respectively is non non-singular. Then

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
C A^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & D-C A^{-1} B
\end{array}\right)\left(\begin{array}{cc}
I & A^{-1} B \\
0 & I
\end{array}\right)
$$

or

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A-B D^{-1} C & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
D^{-1} C & I
\end{array}\right)
$$

Lemma A. 7 (Schur Lemma). Let $Q$ and $R$ be symmetric matrices. The following are equivalent.

$$
\begin{align*}
& \left(\begin{array}{cc}
Q & S \\
S^{T} & R
\end{array}\right) \geq 0,  \tag{A.16}\\
& R \geq 0, \quad Q-S R^{\dagger} S^{T} \geq 0, \quad S\left(I-R R^{\dagger}\right)=0  \tag{A.17}\\
& Q \geq 0, \quad R-S^{T} Q^{\dagger} S \geq 0, \quad\left(I-Q Q^{\dagger}\right) S=0 \tag{A.18}
\end{align*}
$$

Lemma A. 8 (Symmetric Schur Lemma). Let $Q$ and $R$ be symmetric matrices. The following are equivalent.

$$
\begin{align*}
& \left(\begin{array}{cc}
Q & S \\
S^{T} & R
\end{array}\right)>0  \tag{A.19}\\
& R>0, \quad Q-S R^{-1} S^{T}>0  \tag{A.20}\\
& Q>0, \quad R-S^{T} Q^{-1} S>0 \tag{A.21}
\end{align*}
$$

We note that the equality $S\left(I-R R^{\dagger}\right)=0$ is redundant since $R^{\dagger}=R^{-1}$.
Lemma A.9. Suppose that $I-A B$ is nonsingular. Then

$$
A(I-B A)^{-1}=(I-A B)^{-1} A
$$

Lemma A. 10 (Matrix Inversion Lemma). Let $A, C$ and $D^{-1}+C A^{-1} B$ be nonsingular. Then

$$
(A+B D C)^{-1}=A^{-1}-A^{-1} B\left(D^{-1}+C A^{-1} B\right)^{-1} C A^{-1} .
$$

Suppose A and D are both non-singular. Then

$$
\left(A-B D^{-1} C\right)^{-1}=A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1}
$$

Let

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

Let us suppose that $M$ is non-singular. Moreover, suppose $A$ or $D$ respectively is non-singular and let $V=D-C A^{-1} B$ or $W=A-B D^{-1} C$. Then

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A^{-1}+A^{-1} B V^{-1} C A^{-1} & -A^{-1} B V^{-1} \\
-V^{-1} C A^{-1} & V^{-1}
\end{array}\right)
$$

or

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
W^{-1} & -W^{-1} B D^{-1} \\
-D^{-1} C W^{-1} & D^{-1}+D^{-1} C W^{-1} B D^{-1}
\end{array}\right)
$$

If $M, A$ and $D$ are all non-singular then

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right)
$$

## A.1.4. Inertia

Definition A.11. The inertia of a Hermitian $P \in \mathbb{R}^{n \times n}$ is defined as

$$
\begin{equation*}
\operatorname{in}(P)=\left(\operatorname{in}_{-}(P), \operatorname{in}_{0}(P), i n_{+}(P)\right) \tag{A.22}
\end{equation*}
$$

with in_ $(P)$, in $_{0}(P)$, in $_{+}(P)$ denoting the number of negative, zero and positive eigenvalues of $P$. Moreover, for any subspace $\mathcal{S} \subset \mathbb{R}^{n}$ the inertia $\operatorname{in}\left(\left.P\right|_{\mathcal{S}}\right)$ is defined by in $\left(S^{*} P S\right)$, where $S$ is an arbitrary basis matrix of $\mathcal{S}$.

Example A.12. Consider $P=\left(\begin{array}{cc}-1 & 0 \\ 0 & \frac{1}{16}\end{array}\right)$ and a (maximal) negative subspace $\mathcal{S}=\binom{1}{2} . \quad$ However, its complementary subspace $\mathcal{S}^{\perp}=\binom{-2}{1}$ is also a (maximal) negative subspace! As it is expected $\left(\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right)$ is not a negative subspace, since the eigenvalues of $\left(\begin{array}{cc}-1+1 / 4 & 2+1 / 8 \\ 2+1 / 8 & -4+1 / 16\end{array}\right)$ are of different sign.

But $\mathcal{S}^{\perp}$ is a positive subspace of $P^{-1}$.
Lemma A. 13 (Inertia Lemma). If $A$ is nonsingular then

$$
i n\left(\begin{array}{cc}
A & C  \tag{A.23}\\
C^{*} & B
\end{array}\right)=\operatorname{in}(A)+\operatorname{in}\left(B-C^{*} A^{-1} C\right) .
$$

Lemma A. 14 (Dualization Lemma). Let P be a non-singular symmetric matrix in $\mathbb{R}^{n \times n}$ and let $\mathcal{U}$ and $\mathcal{V}$ be two complementary subspaces with $\mathcal{U} \oplus \mathcal{V}=$ $\mathbb{R}^{n}$. Then

$$
\begin{equation*}
x^{T} P x<0 \text { for all } x \in \mathcal{U} \backslash\{0\} \text { and } x^{T} P x \geq 0 \text { for all } x \in \mathcal{V} \tag{A.24}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
x^{T} P^{-1} x>0 \text { for all } x \in \mathcal{U}^{\perp} \backslash\{0\} \text { and } x^{T} P^{-1} x \leq 0 \text { for all } x \in \mathcal{V}^{\perp} \tag{A.25}
\end{equation*}
$$

An other formulation: let $\mathcal{S}$ be a subspace with $\operatorname{in}_{0}\left(\left.P\right|_{\mathcal{S}}\right)=0$. Then

$$
\begin{equation*}
i n(P)=i n\left(\left.P\right|_{\mathcal{S}}\right)+i n\left(\left.P^{-1}\right|_{\mathcal{S}^{\perp}}\right) \tag{A.26}
\end{equation*}
$$

Example A.15. Consider $P=\left(\begin{array}{cc}-1 & 0 \\ 0 & \frac{1}{16}\end{array}\right)$ and a (maximal) negative subspace $\mathcal{S}=\binom{1}{2} . \quad$ However, its complementary subspace $\mathcal{S}^{\perp}=\binom{-2}{1}$ is also a (maximal) negative subspace! As it is expected $\left(\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right)$ is not a negative subspace, since the eigenvalues of $\left(\begin{array}{cc}-1+1 / 4 & 2+1 / 8 \\ 2+1 / 8 & -4+1 / 16\end{array}\right)$ are of different sign.

But $\mathcal{S}^{\perp}$ is a positive subspace of $P^{-1}$.

## A.2. Extensions of positive definite matrices

Lemma A.16. Let the matrix $P$ be partitioned as

$$
P=\left(\begin{array}{cc}
A & X  \tag{A.27}\\
X^{*} & B
\end{array}\right)
$$

where $A>0$ and $B>0$. Then $P>0$ if and only if $X=A^{1 / 2} K B^{1 / 2}$, where $\|K\|<1$.

Proof:. The matrix $P$ is similar to the matrix

$$
\left(\begin{array}{cc}
A^{-1 / 2} & 0  \tag{A.28}\\
0 & B^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
A & X \\
X^{*} & B
\end{array}\right)\left(\begin{array}{cc}
A^{-1 / 2} & 0 \\
0 & B^{-1 / 2}
\end{array}\right)=\left(\begin{array}{cc}
I & Y \\
Y^{*} & I
\end{array}\right)
$$

with $Y=A^{-1 / 2} X B^{-1 / 2}$. Inequality

$$
\left(\begin{array}{cc}
I & Y  \tag{A.29}\\
Y^{*} & I
\end{array}\right)>0
$$

is equivalent to $I-Y Y^{*}>0$ and $I-Y^{*} Y>0$ which means that $\|Y\|<1$.
Consequently $P>0$ if and only if $\left\|B^{-1 / 2} X^{*} A^{-1 / 2}\right\|<1$, i.e., $X=A^{1 / 2} K B^{1 / 2}$, where $K$ is an arbitrary contraction $(\|K\|<1)$.

Lemma A.17. Let the matrix $P$ be partitioned as

$$
P=\left(\begin{array}{cc}
A & X  \tag{A.30}\\
X^{*} & B
\end{array}\right)
$$

If $A>0$ is given, $X$ is arbitrary, $B>0$ and $B>X^{*} A^{-1} X$ then $P$ is positive definite.

Proof:. Using the Schur complement, we have that $A>0, B>0$ and $B-$ $X^{*} A^{-1} X>0$ which implies that $P>0$.

Theorem A.18. [Positive definite extension] Let $X>0$ and $Y>0$ be given. Then there exists a positive definite matrix $P$ that satisfy

$$
P=\left(\begin{array}{cc}
X & M  \tag{A.31}\\
M^{*} & \bar{X}
\end{array}\right) \quad \text { and } \quad P^{-1}=\left(\begin{array}{cc}
Y & N \\
N^{*} & \bar{Y}
\end{array}\right)
$$

if and only is

$$
\left(\begin{array}{ll}
X & I  \tag{A.32}\\
I & Y
\end{array}\right) \geq 0 .
$$

If the existence condition is satisfied, all such extensions are given as

$$
P=\left(\begin{array}{cc}
X^{1 / 2} & 0  \tag{A.33}\\
0 & \bar{X}^{1 / 2}
\end{array}\right)\left(\begin{array}{cc}
I & K \\
K^{*} & I
\end{array}\right)\left(\begin{array}{cc}
X^{1 / 2} & 0 \\
0 & \bar{X}^{1 / 2}
\end{array}\right)
$$

with an arbitrary $\bar{X}>0$ and a contraction $K$ determined by the condition

$$
\begin{equation*}
K K^{*}=I-X^{-1 / 2} Y^{-1} X^{-1 / 2} \tag{A.34}
\end{equation*}
$$

Hence, the dimension of the minimal extension is given by

$$
n_{X, Y}=\operatorname{rank}\left(X-Y^{-1}\right)=\operatorname{rank}\left(\begin{array}{cc}
X & I  \tag{A.35}\\
I & Y
\end{array}\right)
$$

Proof:. The assertion is a direct consequence of the matrix inversion lemma. With the notation $W=X-M \bar{X}^{-1} M^{*}$ we have that $Y=W^{-1}$ and

$$
\begin{align*}
& \left(\begin{array}{cc}
X & M \\
M^{*} & \bar{X}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
W^{-1} & -W^{-1} M \bar{X}^{-1} \\
-\bar{X}^{-1} M^{*} W^{-1} & \bar{X}^{-1}+\bar{X}^{-1} M^{*} W^{-1} M \bar{X}^{-1}
\end{array}\right)= \\
& =\left(\begin{array}{cc}
W^{-1} & 0 \\
0 & \bar{X}^{-1}
\end{array}\right)+\left(\begin{array}{cc}
I & 0 \\
0 & \bar{X}^{-1} M^{*}
\end{array}\right)\left(\begin{array}{cc}
0 & -W^{-1} \\
-W^{-1} & W^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & M \bar{X}^{-1}
\end{array}\right) . \tag{A.36}
\end{align*}
$$

From Lemma A. 16 follows the equality $M=X^{1 / 2} K \bar{X}^{1 / 2}$. The expressions for $M, N$ and $\bar{Y}$ can be obtained by direct computation:

$$
\begin{align*}
M & =X^{1 / 2} K \bar{X}^{1 / 2}  \tag{A.37}\\
N & =-Y X^{1 / 2} K \bar{X}^{-1 / 2}=-Y M \bar{X}^{-1}=-X^{-1 / 2}\left(I-K K^{*}\right)^{-1} K \bar{X}^{-1 / 2}  \tag{A.38}\\
Y & =\left(X-M \bar{X}^{-1} M^{*}\right)^{-1}=X^{-1 / 2}\left(I-K K^{*}\right)^{-1} X^{-1 / 2}  \tag{A.39}\\
\bar{Y} & =\bar{X}^{-1 / 2}\left[I+K^{*}\left(I-K K^{*}\right)^{-1} K\right] \bar{X}^{-1 / 2} \tag{A.40}
\end{align*}
$$

The matrix $P^{-1}$ can be expressed as

$$
P^{-1}=W\left(\begin{array}{cc}
\left(I-K K^{*}\right)^{-1} & -\left(I-K K^{*}\right)^{-1} K  \tag{A.41}\\
-K^{*}\left(I-K K^{*}\right)^{-1} & I+K^{*}\left(I-K K^{*}\right)^{-1} K
\end{array}\right) W
$$

with

$$
W=\left(\begin{array}{cc}
X^{-1 / 2} & 0  \tag{A.42}\\
0 & \bar{X}^{-1 / 2}
\end{array}\right)
$$

or as

$$
P^{-1}=\left(\begin{array}{cc}
Y & 0  \tag{A.43}\\
0 & \bar{X}^{-1}
\end{array}\right)+\left(\begin{array}{cc}
I & 0 \\
0 & \bar{X}^{-1} M^{*}
\end{array}\right)\left(\begin{array}{cc}
0 & -Y \\
-Y & Y
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & M X^{-1}
\end{array}\right)
$$

Remark A.19. If one has strict inequality in (A.32) it follows that we have $I=X^{1 / 2} L Y^{1 / 2}$ with a suitable contraction $\|L\|<1$, i.e., $X^{-1 / 2}=L Y^{1 / 2}$.

Then (A.39) reveals that $I-K K^{*}=L L^{*}$.

## A.3. Variable elimination

Lemma A. 20 (Finsler's Lemma). Let $x \in \mathbb{R}^{n}, P=P^{*} \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{q \times n}$ with $r=\operatorname{rank}(V)<n$. Then the following are equivalent

$$
\begin{align*}
& \text { (1) } P<0 \quad \text { on } \operatorname{Ker}(V)  \tag{A.44}\\
& \text { (2) }\left(V_{\dashv}\right)^{T} P V_{\dashv}<0 \quad \text { on } \mathbb{R}^{n-r}  \tag{A.45}\\
& \text { (3) } \exists \mu \in \mathbb{R}: P-\mu V^{T} V<0 \quad \text { on } \quad \mathbb{R}^{n}  \tag{A.46}\\
& \text { (4) } \exists X \in \mathbb{R}^{n \times q}: P+X V+V^{T} X^{T}<0 \quad \text { on } \mathbb{R}^{n} \tag{A.47}
\end{align*}
$$

Inequality (3) can be replaced by the variant

$$
\begin{equation*}
\text { (3b) } \exists X=X^{T} \in \mathbb{R}^{q \times q}: P+V^{T} X V<0 \quad \text { on } \quad \mathbb{R}^{n} \text {. } \tag{A.48}
\end{equation*}
$$

Remark A.21. Inequality (4) can be also written in the form

$$
P+\binom{I}{V}^{T}\left(\begin{array}{cc}
0 & X  \tag{A.49}\\
X^{T} & 0
\end{array}\right)\binom{I}{V}<0
$$

and also in the form

$$
\binom{I}{X V}^{T}\left(\begin{array}{cc}
P & I  \tag{A.50}\\
I & 0
\end{array}\right)\binom{I}{X V}<0
$$

Lemma A. 22 (Projection Elmma). For arbitrary A, B and a symmetric P, the LMI

$$
\begin{equation*}
P+A X B+(A X B)^{*}<0 \tag{A.51}
\end{equation*}
$$

in the unstructured $X$ has a solution if and only if

$$
\begin{equation*}
A^{*} x=0 \quad \text { or } \quad B x=0 \quad \text { imply } \quad x^{T} P x<0 \quad \text { or } \quad x=0 \tag{A.52}
\end{equation*}
$$

The conditions above are equivalent to

$$
\begin{equation*}
A_{\perp} P A_{\perp}^{*}<0 \quad \text { and } \quad B_{\dashv}^{*} P B_{\dashv}<0 \tag{A.53}
\end{equation*}
$$

Remark A.23. Inequality (A.51) can be also written in the form

$$
P+\binom{A^{T}}{B}^{T}\left(\begin{array}{cc}
0 & X  \tag{A.54}\\
X^{T} & 0
\end{array}\right)\binom{A^{T}}{B}<0
$$

and also in the form

$$
\binom{I}{A X B}^{T}\left(\begin{array}{cc}
P & I  \tag{A.55}\\
I & 0
\end{array}\right)\binom{I}{A X B}<0
$$

Inequalities in (A.53) can also be formulated as $\left(A^{*}\right)_{-}^{*} P\left(A^{*}\right)_{\dashv}<0$ and $\left(B^{*}\right)_{\perp} P\left(B^{*}\right)_{\perp}^{*}<0$, respectively.

Lemma A. 24 (Elimination Lemma). Let $Q=Q^{T}$ non-singular with in $(Q)=$ ( $m, 0, n$ ) and let us consider the quadratic matrix inequality

$$
\begin{equation*}
\binom{I}{C+A X B}^{T} Q\binom{I}{C+A X B}<0 \tag{A.56}
\end{equation*}
$$

Here $C$ is of dimension $n \times m$. This inequality has a solution if and only if

$$
\begin{equation*}
B_{\dashv}^{T}\binom{I}{C}^{T} Q\binom{I}{C} B_{\dashv}<0 \tag{A.57}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{\perp}\binom{-C^{T}}{I}^{T} Q^{-1}\binom{-C^{T}}{I} A_{\perp}^{T}>0 \tag{A.58}
\end{equation*}
$$

## A.4. The Möbius transformation

Definition A.25. Let $M \in \mathbb{F}^{(m+n) \times(m+n)}(\mathbb{F}=\mathbb{R}$ or $\mathbb{C})$ be partitioned as

$$
M=\left(\begin{array}{ll}
A & B  \tag{A.59}\\
C & D
\end{array}\right)
$$

The Möbius transformation $T_{M}$ is defined by the equation

$$
\begin{equation*}
T_{M}(X)=(C+D X)(A+B X)^{-1} \tag{A.60}
\end{equation*}
$$

for $X \in \mathbb{F}^{n \times m}$ where $(A+B X)^{-1}$ exists. Denote by

$$
\begin{equation*}
\operatorname{dom}\left(T_{M}\right)=\left\{X \in \mathbb{F}^{n \times m}: \exists(A+B X)^{-1}\right\} \tag{A.61}
\end{equation*}
$$

the domain of $T_{M}$.
The dual Möbius transformation is defined by

$$
\begin{equation*}
T_{M}^{d}(Z)=(Z B+D)^{-1}(Z A+C) \tag{A.62}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dom}\left(T_{M}^{d}\right)=\left\{Z \in \mathbb{F}^{n \times m}: \exists(Z B+D)^{-1}\right\} \tag{A.63}
\end{equation*}
$$

Theorem A.26. Let $M \in \mathbb{F}^{(m+n) \times(m+n)}$. Then

$$
\begin{equation*}
X \in \operatorname{dom}\left(T_{M}^{d}\right) \quad \Leftrightarrow \quad X^{*} \in \operatorname{dom}\left(T_{L^{*} M^{*} L}\right) \tag{A.64}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
T_{M}^{d}(X)=T_{L^{*} M^{*} L}^{*}\left(X^{*}\right) \tag{A.65}
\end{equation*}
$$

where

$$
L=\left(\begin{array}{cc}
0 & I_{m}  \tag{A.66}\\
I_{n} & 0
\end{array}\right)
$$

If $M \in \mathbb{F}^{(m+n) \times(m+n)}$ is a nonsingular matrix, then

$$
\begin{equation*}
T_{M}(X)=-T_{M^{-1}}^{d}(-X) \tag{A.67}
\end{equation*}
$$

Proof:. A direct computation reveals that

$$
\begin{equation*}
\left[T_{M}^{d}(X)\right]^{*}=\left(C^{*}+A^{*} X^{*}\right)\left(D^{*}+B^{*} X^{*}\right)^{-1}=T_{L^{*} M^{*} L}\left(X^{*}\right) \tag{A.68}
\end{equation*}
$$

Let $M$ and $M^{-1}$ be partitioned as

$$
M=\left(\begin{array}{ll}
A & B  \tag{A.69}\\
C & D
\end{array}\right), \quad M^{-1}=\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)
$$

then identity

$$
\left(\begin{array}{ll}
-X & I_{n} \tag{A.70}
\end{array}\right) M^{-1} M\binom{I_{m}}{X}=0
$$

implies that

$$
(H-X F)\left(\begin{array}{cc}
T_{M^{-1}}^{d}(-X) & I_{n} \tag{A.71}
\end{array}\right)\binom{I_{m}}{T_{M}(X)}(A+B X)=0
$$

provided $(H-X F)$ and $(A+B X)$ are nonsingular. Then

$$
\left(\begin{array}{ll}
T_{M^{-1}}^{d}(-X) & I_{n} \tag{A.72}
\end{array}\right)\binom{I_{m}}{T_{M}(X)}=0
$$

i.e., (A.67).

It remains to prove that $X \in \operatorname{dom}\left(T_{M}\right)$ is equivalent to $-X \in \operatorname{dom}\left(T_{M^{-1}}^{d}\right)$. To this end consider the nonsingular matrix

$$
T=\left(\begin{array}{ll}
A & B  \tag{A.73}\\
C & D
\end{array}\right)\left(\begin{array}{cc}
I & -X^{*} \\
X & I
\end{array}\right)=\left(\begin{array}{cc}
A+B X & -A X^{*}+B \\
C+D X & D-C X^{*}
\end{array}\right)
$$

and its inverse

$$
\begin{align*}
T^{-1} & =\left(\begin{array}{cc}
I & -X^{*} \\
X & I
\end{array}\right)^{-1}\left(\begin{array}{cc}
E & F \\
G & H
\end{array}\right)= \\
& =\left(\begin{array}{cc}
\left(I+X^{*} X\right)^{-1} & X^{*}\left(I+X X^{*}\right)^{-1} \\
-\left(I+X X^{*}\right)^{-1} X & \left(I+X X^{*}\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
E & F \\
G & H
\end{array}\right) \tag{A.74}
\end{align*}
$$

If $(A+B X)$ is nonsingular then from the Schur inversion formula it follows that the right bottom block of $T^{-1}$ is also nonsingular. This block equals to $\left(I+X X^{*}\right)^{-1}(H-X F)$, hence $(H-X F)$ is nonsingular. Analogously, nonsingularity of $(H-X F)$ implies the nonsingularity of $A+B X$.

Corollary A. 27.

$$
\begin{equation*}
-T_{M}^{*}(X)=T_{L^{*} M^{-*} L}\left(-X^{*}\right) \tag{A.75}
\end{equation*}
$$

Let us consider the composition of two Möbius transformations.
Definition A.28. Let $M$ and $N$ be matrices partitioned as

$$
M=\left(\begin{array}{ll}
A & B  \tag{A.76}\\
C & D
\end{array}\right), \quad N=\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right) .
$$

Then the composition of the transformations $T_{M}$ and $T_{N}$ is defined by

$$
\begin{equation*}
\left(T_{N} \circ T_{M}\right)(X)=T_{N}\left(T_{M}(X)\right) \tag{A.77}
\end{equation*}
$$

Lemma A.29.

$$
\begin{gather*}
\left(T_{N} \circ T_{M}\right)(X)=T_{N}\left(T_{M}(X)\right)=T_{N M}(X),  \tag{A.78}\\
X \in \operatorname{dom}\left(T_{M}\right) \quad \text { and } \quad T_{M}(X) \in \operatorname{dom}\left(T_{N}\right) \tag{A.79}
\end{gather*}
$$

or equivalently

$$
\begin{equation*}
X \in \operatorname{dom}\left(T_{M}\right) \quad \text { and } \quad X \in \operatorname{dom}\left(T_{N M}\right) \tag{A.80}
\end{equation*}
$$

If $M$ is nonsingular, $X \in \operatorname{dom}\left(T_{M}\right)$ and $T_{M}(X)=K$ then $K \in \operatorname{dom}\left(T_{M^{-1}}\right)$ and $T_{M^{-1}}(K)=X$, i.e.,

$$
\begin{equation*}
\operatorname{dom}\left(T_{M}\right)=\operatorname{Range}\left(T_{M^{-1}}\right) \tag{A.81}
\end{equation*}
$$

## A.5. Kalman-Yakubovich-Popov type results

Lemma A. 30 (Robust Finsler's lemma). Let fixed matrices $Q=Q^{*}, W$ and $a$ compact subset of matrices $\mathcal{H}$ be given.

Then the following statements are equivalent:
i.) for each $H \in \mathcal{H}$

$$
\begin{equation*}
\xi^{*} Q \xi<0, \quad \forall \xi \neq 0, H W \xi=0 . \tag{A.82}
\end{equation*}
$$

ii.) there exists $\Theta=\Theta^{*}$ such that

$$
\begin{align*}
& Q+W^{*} \Theta W<0,  \tag{A.83}\\
& \quad \mathcal{N}_{H}^{*} \Theta \mathcal{N}_{H} \geq 0, \quad \forall H \in \mathcal{H} . \tag{A.84}
\end{align*}
$$

This result is a generalization of the Finsler's lemma. A similar, slightly more general, result is called the full block S -procedure.

Lemma A.31. Let matrices $A, B, C$ and $Q$ be given, where all the matrices except $B$ are symmetric. Then the following statements are equivalent.

$$
\text { (i) There is an } X \text { such that }\left(\begin{array}{cc}
Q & X  \tag{A.85}\\
X^{*} & R
\end{array}\right)>\left(\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right) \text {. }
$$

(ii) $F=Q-A>0$ and $G=R-C>0$.

If the above statements hold all $X$ are given as

$$
\begin{equation*}
X=B+F^{1 / 2} L G^{1 / 2}, \tag{A.87}
\end{equation*}
$$

where $L$ is an arbitrary contraction such that $\|L\|<1$.

Proof:. The proof is elementary, hence it is omitted for brevity.

## A.5.1. Variants of the KYP lemma

Theorem A. 32 (Extended KYP lemma). Let P be a Hermitian matrix. Then

$$
\begin{equation*}
\binom{F(\delta)}{I}^{*} P\binom{F(\delta)}{I} \prec 0, \quad \forall \delta \in \Delta \tag{A.88}
\end{equation*}
$$

where $F(\delta)=D+C \delta(I-A \delta)^{-1} B$, if there exists a Hermitian multiplier $Q$ which satisfies

## C-1:

$$
\left(\begin{array}{cc}
A & B \\
I & 0
\end{array}\right)^{*} Q\left(\begin{array}{cc}
A & B \\
I & 0
\end{array}\right)+\left(\begin{array}{cc}
C & D \\
0 & I
\end{array}\right)^{*} P\left(\begin{array}{cc}
C & D \\
0 & I
\end{array}\right)<0
$$

C-2:

$$
\binom{I}{\delta}^{*} Q\binom{I}{\delta} \geq 0, \quad \forall \delta \in \Delta .
$$

For compact $\Delta$ one has the reverse implication, too.
Proof:. Recall the fact that $\delta(I-A \delta)^{-1}=(I-\delta A)^{-1} \delta$ and consider

$$
\begin{equation*}
G(\delta)=\binom{(I-\delta A)^{-1} \delta B}{I} \tag{A.89}
\end{equation*}
$$

Then one has the identities

$$
\left(\begin{array}{ll}
I & 0  \tag{A.90}\\
A & B
\end{array}\right) G(\delta)=\binom{\delta}{I}(I-A \delta)^{-1} B
$$

and

$$
\left(\begin{array}{cc}
C & D  \tag{A.91}\\
0 & I
\end{array}\right) G(\delta)=\binom{F(\delta)}{I}
$$

Therefore from $\mathbf{C - 1}$ one has

$$
\begin{equation*}
\left((I-A \delta)^{-1} B\right)^{*}\binom{\delta}{I}^{*} Q\binom{\delta}{I}(I-A \delta)^{-1} B+\binom{F(\delta)}{I}^{*} P\binom{F(\delta)}{I}<0 \tag{A.92}
\end{equation*}
$$

From C-1 it follows (A.88).
For the reverse implication let us consider that $\Delta$ is compact.
Observe that $G_{\perp}(\delta)=((I-\delta A)-\delta B)$, i.e.,

$$
G_{\perp}(\delta) G(\delta)=\left(\begin{array}{ll}
-\delta & I
\end{array}\right)\left(\begin{array}{cc}
A & B  \tag{A.93}\\
I & 0
\end{array}\right)\binom{\delta(I-A \delta)^{-1} B}{I}=0
$$

Then by an application of the robust Finsler's lemma, i.e., by taking $H=$ $\left(\begin{array}{ll}-\delta & I\end{array}\right)$ and $W=\left(\begin{array}{cc}A & B \\ I & 0\end{array}\right)$ the assertion follows.

Theorem A. 33 (Extended KYP with transformed parameters). For a given compact set $\tilde{\boldsymbol{\Delta}}$ let us consider a nonsingular matrix $M$, the corresponding Möbius transformation $T_{M}$ and a set $\boldsymbol{\Delta}$ such that $\boldsymbol{\Delta} \subset \operatorname{dom}\left(T_{M}\right)$ and $\tilde{\boldsymbol{\Delta}}=$ $T_{M}(\boldsymbol{\Delta})$.

Then

$$
\begin{equation*}
\binom{I}{F(\delta)}^{*} P_{p}\binom{I}{F(\delta)}<0, \quad \forall \delta \in \Delta \tag{A.94}
\end{equation*}
$$

where $F(\delta)=D+C \delta(I-A \delta)^{-1} B$, if and only if there exists a symmetric (Hermitian) multiplier $P$ which satisfies
M-1:

$$
\left(\begin{array}{cc}
I & 0 \\
A & B
\end{array}\right)^{*} P\left(\begin{array}{ll}
I & 0 \\
A & B
\end{array}\right)+\left(\begin{array}{cc}
0 & I \\
C & D
\end{array}\right)^{*} P_{p}\left(\begin{array}{cc}
0 & I \\
C & D
\end{array}\right)<0,
$$

M-2:

$$
\begin{equation*}
P=\bar{M}^{*} \tilde{P} \bar{M}, \quad \text { with }\binom{\tilde{\delta}}{I}^{*} \tilde{P}\binom{\tilde{\delta}}{I} \geq 0, \quad \forall \tilde{\delta} \in \tilde{\Delta}, \tag{A.96}
\end{equation*}
$$

where $\bar{M}=\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right) M\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right)$.
Proof:. Recall the fact that $\delta(I-A \delta)^{-1}=(I-\delta A)^{-1} \delta$ and consider

$$
\begin{equation*}
G(\delta)=\binom{(I-\delta A)^{-1} \delta B}{I} \tag{A.97}
\end{equation*}
$$

Then one has the identities

$$
\left(\begin{array}{ll}
I & 0  \tag{A.98}\\
A & B
\end{array}\right) G(\delta)=\binom{\delta}{I}(I-A \delta)^{-1} B
$$

and

$$
\left(\begin{array}{cc}
0 & I  \tag{A.99}\\
C & D
\end{array}\right) G(\delta)=\binom{I}{F(\delta)} .
$$

If $M$ is partitioned as $M=\left(\begin{array}{ll}U & V \\ X & Z\end{array}\right)$ by using the notation $W(\delta)=(U+$ $V \delta)^{-1}$ one has

$$
\begin{equation*}
\binom{\tilde{\delta}}{I}^{*} \tilde{P}\binom{\tilde{\delta}}{I}=W(\delta)^{*}\binom{\delta}{I}^{*} \bar{M}^{*} \tilde{P} \bar{M}\binom{\delta}{I} W(\delta) . \tag{A.100}
\end{equation*}
$$

It follows that with $P=\bar{M}^{*} \tilde{P} \bar{M}$ one has

$$
\begin{equation*}
\binom{\tilde{\delta}}{I}^{*} \tilde{P}\binom{\tilde{\delta}}{I} \geq 0 \text { iff }\binom{\delta}{I}^{*} P\binom{\delta}{I} \geq 0 \tag{A.101}
\end{equation*}
$$

Therefore, from M-1 one has

$$
\begin{array}{r}
\left((I-A \delta)^{-1} B\right)^{*}\binom{\delta}{I}^{*} P\binom{\delta}{I}(I-A \delta)^{-1} B+ \\
+\binom{I}{F(\delta)}^{*} P_{p}\binom{I}{F(\delta)}<0 . \tag{A.103}
\end{array}
$$

Thus, from M-1 and M-2 follows (A.94).
For the reverse implication observe that

$$
G_{\perp}(\delta)=\left(\begin{array}{ll}
(I-\delta A) & -\delta B \tag{A.104}
\end{array}\right)
$$

i.e., from (A.90) one has

$$
G_{\perp}(\delta) G(\delta)=\left(\begin{array}{ll}
I & -\delta
\end{array}\right)\left(\begin{array}{ll}
I & 0  \tag{A.105}\\
A & B
\end{array}\right) G(\delta)=0
$$

Using Theorem A. 26 it follows that

$$
\begin{equation*}
-\delta=-T_{M^{-1}}(\tilde{\delta})=T_{M}^{d}(-\tilde{\delta}) \tag{A.106}
\end{equation*}
$$

Thus, one has

$$
\begin{align*}
\left(\begin{array}{ll}
-\delta & I
\end{array}\right) & =\left(\begin{array}{ll}
T_{M}^{d}(-\tilde{\delta}) \quad I
\end{array}\right)=  \tag{A.107}\\
& =(-\tilde{\delta} V+Z)^{-1}\left(\begin{array}{ll}
-\tilde{\delta} U+X & -\tilde{\delta} V+Z
\end{array}\right)=  \tag{A.108}\\
& =(-\tilde{\delta} V+Z)^{-1}\left(\begin{array}{ll}
-\tilde{\delta} & I
\end{array}\right) M \tag{A.109}
\end{align*}
$$

It follows that $G_{\perp}(\delta) \xi=0$ is equivalent to

$$
\left(\begin{array}{ll}
I & -\tilde{\delta}
\end{array}\right) \bar{M}\left(\begin{array}{cc}
I & 0  \tag{A.110}\\
A & B
\end{array}\right) \xi=0
$$

for all $\xi$.

Since $\tilde{\Delta}$ is compact one can apply the robust Finsler's lemma, i.e., by taking $H=\left(\begin{array}{ll}I & -\tilde{\delta}\end{array}\right)$ and $W=\bar{M}\left(\begin{array}{ll}I & 0 \\ A & B\end{array}\right)$ in Lemma A.30, one has that there exist a matrix $\tilde{P}$ such that

$$
\left(\begin{array}{cc}
I & 0  \tag{A.111}\\
A & B
\end{array}\right)^{*} P\left(\begin{array}{ll}
I & 0 \\
A & B
\end{array}\right)+\left(\begin{array}{ll}
0 & I \\
C & D
\end{array}\right)^{*} P_{p}\left(\begin{array}{ll}
0 & I \\
C & D
\end{array}\right)<0,
$$

with $P=\bar{M}^{*} \tilde{P} \bar{M}$ and

$$
\begin{equation*}
\binom{\tilde{\delta}}{I}^{*} \tilde{P}\binom{\tilde{\delta}}{I} \geq 0, \quad \forall \delta \in \tilde{\Delta} . \tag{A.112}
\end{equation*}
$$

Remark A.34. In M-2 one can always take strict inequality without restricting generality.

Proposition A. 33 extends the power of the S-procedure to sets that are not bounded, however, that can be obtained as a Möbis transform of a compact set. As an example one can obtain an easy derivation of the strict version of the Kalman-Yakubovich-Popov lemma:
Theorem A. 35 (KYP Continuous Time). Let the matrices $A \in \mathbb{R}^{n \times n}, B \in$ $\mathbb{R}^{n \times m}, M=M^{T} \in \mathbb{R}^{(n+m) \times(n+m)}$ be given, with $\operatorname{det}(\mathrm{j} \omega I-\mathrm{A}) \neq 0$ for $\omega \in \mathbb{R}$.

The following two statements are equivalent:
i.)

$$
\binom{(\mathrm{j} \omega I-A)^{-1} B}{I}^{*} M\binom{(\mathrm{j} \omega I-A)^{-1} B}{I}<0
$$

for all $\omega \in \mathbb{R} \cup\{\infty\}$.
ii.) There exists a matrix $P \in \mathbb{R}^{n \times n}$ such that $P=P^{T}$ and

$$
M+\left(\begin{array}{cc}
A^{T} P+P A & P B \\
B^{T} P & 0
\end{array}\right)<0 .
$$

Theorem A. 36 (KYP Discrete Time). Let the matrices $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, $M=M^{T} \in \mathbb{R}^{(n+m) \times(n+m)}$ be given, with $\operatorname{det}\left(e^{\mathrm{j} \omega} \omega I-\mathrm{A}\right) \neq 0$ for $\omega \in \mathbb{R}$.

The following two statements are equivalent:
i.)

$$
\binom{\left(e^{\mathrm{j} \omega} \omega I-A\right)^{-1} B}{I}^{*} M\binom{\left(e^{\mathrm{j} \omega} \omega I-A\right)^{-1} B}{I}<0
$$

for all $\omega \in \mathbb{R}$.
ii.) There exists a matrix $P \in \mathbb{R}^{n \times n}$ such that $P=P^{T}$ and

$$
M+\left(\begin{array}{cc}
A^{T} P A-P & A^{T} P B \\
B^{T} P A & B^{T} P B
\end{array}\right)<0
$$

Remark A.37. If $(A, B)$ is controllable the corresponding equivalence also holds for non-strict inequalities.

The discrete-time version of the lemma can be obtained by the compactness of the unit circle while the continuous-time version follows from the fact that the imaginary line is a Möbius transform (Cayley-transform) of the unit circle.

