Matematikai modellek megoldása számítógéppel

Készítette: Dr. Ábrahám István

A matematikai modellek számítógépes megoldásait példákkal mutatjuk be.

Példa: Négy erőforrás felhasználásával négyféle terméket gyártanak. Az egyes termékek egy-egy egységébe az erőforrásokból rendre 1, 0, 2, 1; 1, 2, 2, 0; 0, 2, 2, 1 és 1, 2, 0, 0 épül be az egyes erőforrásokból. Az erőforrások felső korlátai: 100, 160, 100, 60. A termékek eladási egységárai rendre: 6, 6, 5, 4. Milyen termékszerkezetnél lesz maximális az árbevétel?

Ac	lata	ink	táb	láza	ata:	A matematikai modell:	A döntési változók a gyártandó
		II	111	IV	Kap.		darabszámok: x₁, x₂, x₃, x₄.
A	1	1	0	1	100	a.) x ₁, x ₂, x ₃, x ₄ ≥0	Induló feltétel.
В	0	2	2	2	160	b.) x₁+x₂+x₄ ≤ 100	
С	2	2	2	0	100	2x ₂ +2x ₃ +2x ₄ ≤ 1	60
D	1	0	1	0	60	$2x_1 + 2x_2 + 2x_3 \le 1$	00
Ár	6	6	5	4	Max.	$x_1 + x_3 \le 60$	Korlátozó feltételek.
						c.) z=6x₁+6x₂+5x₃+	-4x₄→max <u>A célfüqqvény.</u>
At	ela	dat	: me	golo	dása s	zimplex módszerrel: <u>x</u> .	=[35 0 15 65]* <u>u</u> _o =[0 0 0 10]*
A	ปนล์		otim	uma	<mark>ok.</mark> v	=[2.5.0.75.1.75.0]* w =	=[0 1.5 0 0]* z _o =545

I. Megoldás az Excell Solverjével

1.) Adatbevitel

Az adatokat az előző lapon lévő adattáblázathoz hasonló formában vihetjük be.

Célszerű a termékek oszlopait x_i -vel, a feltételek sorait f_i -vel elnevezni.

A feltételek sorai alatt legyen a célegyütthatók sora (c^*), alatta legyen az x^* , az optimális megoldások sora, induláskor nullákkal feltöltve.

Az x_4 oszlopa után töltsünk fel egy oszlopot nullákkal a <u>c</u>* soráig, majd legyen egy oszlop a relációjeleknek és egy a kapacitásoknak.

Az induló táblánk:

	x1	x2	х3	x4			b
f1	1	1	0	1	0	<=	100
f2	0	2	2	2	0	<=	160
f3	2	2	2	0	0	<=	100
f4	1	0	1	0	0	<=	60
C *	6	6	5	4	0		
X *	0	0	0	0			

Az adattáblázatot az Excellben bárhol elhelyezhetjük. Legyen x1 a B1 cellában.

Az x4 utáni oszlopban állítjuk elő a modell feltételeinek baloldalát és a célfüggvényt. (*Az adatok és a változók skaláris szorzataként*.)

Konkrétan: az F2 cellába behívjuk a szorzatösszeg függvényt.

Az első tömbbe kerül a B2E2 sor,

a másodikba a B7E7 sor "dollárjelekkel", amit az F4 billentyűvel vihetünk fel.

Ezután az F2 cellában előállított skaláris szorzatot alkalmazzuk a többi sorra. *Az F2 cella jobb alsó sarkában megjelenő vonszoló füllel lejövünk az F6 celláig.* Majd külön rákattintunk az F6 cellára, ez lesz a célcella.

2.) Megoldás

Az Excell eszközök menüjéből behívjuk a Solvert.

Ha nincs ott, akkor a Bővítmények menüpontból bekérjük.

Solver paraméterek	
<u>C</u> élcella: Legyen ⊙ Ma <u>x</u> ○ Mi <u>n</u> ○ Érِték: 0 Módosuló cellák:	Megoldás Bezárás
Ajánlat Korlátozó feltételek: Muzzáadás	<u>B</u> eállítás
Szerkesztés Törlés	Alap <u>h</u> elyzet

A célcella most F6 (rákattintunk).

Maximumot keresünk (bejelölés).

Módosuló cellák: <u>x</u>* sora (B7E7), rákattintunk a sorra.

Korlátozó feltételek: Hozzáadás gombbal egyesével bevisszük: F2<=H2 (rákattintunk a cellákra), majd a Felvesz gomb után jön a következő: F3<=H3 és a többi.

A Beállítás gombon a nemnegatív és a lineáris feltételeket jelöljük be.

Ezt követően indulhat a Megoldás.

A megoldás gombra kattintva megkapjuk az optimális (primál) megoldást:

	x1	x2	x3	x4			b
f1	1	1	0	1	100	<=	100
f2	0	2	2	2	160	<=	160
f3	2	2	2	0	100	<=	100
f4	1	0	1	0	50	<=	60
С*	6	6	5	4	545		
X *	35	0	15	65			

Az **x*** sorából az optimum:

<u>x</u>_o=[35 0 15 65]* z_o=545.

Az eltérésváltozó optimumok a kapacitás "maradványok: <u>u</u>_o=[0 0 0 10]*.

Az <u>u</u>_o értékei a Solver eredményjelentéséből is kiolvashatók.

A duál optimum, az érzékenységvizsgálat az érzékenységjelentésből adódnak: Microsoft Excel 11.0 Érzékenység jelentés

Módosuló cellák

		Redukált	Objective	Megengedhető	Megengedhető	
Cella	Név	Végérték	költség	Célegyüttható	növekedés	csökkenés
\$B\$8	x* x1	35	0	6	3	3
\$C\$8	x* x2	0	-1,5	6	1,5	1E+30
\$D\$8	x* x3	15	0	5	5	3
\$E\$8	x* x4	65	0	4	1E+30	3

Korlátozó feltételek

		Shadow Feltétel		Megengedhető	Megengedhető	
Cella	Név	Végérték	Árnyékár	jobb oldala	növekedés	csökkenés
\$F\$3	f1	100	2,5	100	30	70
\$F\$4	f2	160	0,75	160	140	60
\$F\$6	f4	50	0	60	1E+30	10
\$F\$5	f3	100	1,75	100	20	60

A duál optimum: y_o=[2,5 0,75 1,75 0]* *Az árnyékárak oszlopából.*

Valamint: <u>w</u>_o=[0 1,5 0 0]* A redukált költség oszlopából.

Érzékenységvizsgálat:

 b_1 -re: 100-70 $\le b_1 \le$ 100+30

 b_2 -re: 160-60 \le $b_2 \le$ 160+140, és így tovább.

Az érzékenységvizsgálat szerint: ha a b_i értékekkel kilépünk a kapott intervallumból, akkor az optimális tábla szerkezete megváltozik.

Például: Ha a b_1 értéke 140 lesz, akkor: $\underline{x}_o = [50 \ 0 \ 0 \ 80]^*$.

Az érzékenységjelentésből a célegyütthatókra is kapunk határokat:

 c_1 -re: az eredeti érték mindkét irányban 3-mal változhat: $3 \le c_1 \le 9$.

c₂-re: az eredeti érték felfelé 1,5-del, lefelé10³⁰-nal (azaz végtelennel) változhat:

Így: -∞<
$$c_2 ≤ 7,5$$

Hasonlóan: $2 \le c_3 \le 10$ és $1 \le c_4 < \infty$.

Például: Ha a c_1 értéke 10 lesz, akkor: $\underline{x}_0 = [50 \ 0 \ 0 \ 50]^*$.

A szimplex módszerrel számolva az érzékenységvizsgálatra hasonló eredményeket kapunk. (Eltérés lehet, az Excel közelítő számolást végez.)

A számítógépes megoldásnál nem kell megkülönböztetni a normál feladatot (ez volt a példánk) az általános lineáris programozási feladattól.

Így a relációjelek lehetnek tetszőlegesek és a cél is lehet minimum.

A Solverben kérhetjük, hogy a döntési változók egész értékűek legyenek.

Ez utóbbi esetben a program nem tud érzékenységi vizsgálatot végezni.

Disztribúciós feladat megoldása Solverrel

Példa: Egy szállítási feladatban az F_1 és F_2 feladótól a teljes készletet el kell szállítani. Az F_1 feladó az R_1 megrendelőnek nem szállíthat. Adatok:

	R ₁	R_2	R_3	R_4	
F ₁	4	3	5	6	40
F_2	3	5	4	7	80
F_3	2	3	5	4	90
	70	70	40	20	

Az F_i sorok végén a szállítandó mennyiségek, az R_i oszlopok "alján" az igényelt mennyiségek állnak.

A táblázat belsejében lévő számok az F_i-ből R_j-be történő egységnyi mennyiség szállításának költségét mutatják.

Névleges állomást (ötödik rendeltetési helyet) és tiltótarifákat kell felvennünk:

Μ	3	5	6	Μ	40
3	5	4	7	Μ	80
2	3	5	4	0	90
70	70	40	20	10	

A tiltásokat a többi költségelemhez képest igen nagy számok beírásával (M) valósítjuk meg. Például: M=99.

Cél: az F_i -ből az R_j - be szállítandó x_{ij} mennyiségek mátrixának meghatározása úgy, hogy az összköltség minimális legyen.

A feladat megoldható a "szokásos" matematikai modellel, 15 változóval. 7

Egyszerűbb, gyorsabb megoldást kapunk a "mátrixcsere"-módszerrel.

Ehhez felvesszük az Excellben a névleges állomással, tiltásokkal kiegészített táblázatunkat:

	R1	R2	R3	R4	R5	
F 1	99	3	5	6	99	40
F2	3	5	4	7	99	80
F3	2	3	5	4	0	90
	70	70	40	20	10	

Az adattáblázatot az Excellben bárhol elhelyezhetjük. Legyen most R1 a B2 cellában.

Ezután a megoldás $\underline{X} = [x_{ij}]$ mátrixot jelöljük ki, célszerűen az adatok alatt:

	R1	R2	R3	R4	R5		
F1	0	0	0	0	0	0	
F2	0	0	0	0	0	0	
F3	0	0	0	0	0	0	
	0	0	0	0	0		0

Ebben a táblázatban legyen az R1 helye (például) B9 cellában, a célcella pedig legyen a H13.

A cellákat nullákkal töltsük fel.

Az X mátrix oszlopaiban és soraiban összesen az előírt mennyiségek legyenek.

Ehhez: a B13 cellába az összegfüggvényt hívjuk be: SZUM(B10;B12), majd a vonszolófüllel a többi oszlopösszeget is előállítjuk R5-ig.

A sorcellák összegzése: a G10 cellába összegzünk: SZUM(B10;F10) és ezután a vonszolófüllel összegezzük a többi sort F3-ig.

A célcellába (H13) szorzatösszeg kerül. A két tömb: B3-F5 és B10-F12 (\$ jel!).

A H13 cellán állva ezután behívjuk a Solvert.

Célcellaként H13 jelenik meg (ha nem: írjuk oda), bejelöljük a minimumot és módosuló cellák legyenek a B10-F12.

A korlátozó feltételek: a B6-F6 és B13-F13 sorok egyenlők, valamint egyenlőek a G3-G5 és a G10-G12 oszlopok is.

A Solverbe célszerű az egérmutatóval bevinni az adatokat.

Végül beállítjuk a nemnegatív és a lineáris modell feltételeket.

A megoldás gombot lenyomva megkapjuk az eredményt:

	R1	R2	R3	R4	R5		
F1	0	40	0	0	0	40	
F2	40	0	40	0	0	80	
F3	30	30	0	20	10	90	
	70	70	40	20	10		630

Az összköltség minimuma 630.

Az egyes relációkban szállítandó menynyiségeket a szállítási mátrix mutatja.

Például: F1-ből R1-be nincs szállítás, az R2-be pedig 40 egységnyit szállítunk.

A szállítási mátrix:

$$\underline{X} = \begin{bmatrix} 0 & 40 & 0 & 0 & 0 \\ 40 & 0 & 40 & 0 & 0 \\ 30 & 30 & 0 & 20 & 10 \end{bmatrix} \begin{bmatrix} \text{Ez azt is jeleneti, hogy a 3. feladónál 10 egy-}\\ \text{ség marad (a névleges állomásnak szállít).}\\9 \end{bmatrix}$$

Megoldás Lingoval

A program lingo.com lapról tölthető le (a demo változat, ez oktatási célra elég).

A szofver előnye, hogy a matematikai modell a szokásos alakban írható be, tud speciális modelleket kezelni és pontosabb az Excelnél.

Használatához szükséges tudni:

- 1.) A nemnegatív feltételt külön nem kell beírni, a program ezt feltételezi.
- 2.) A feltételek sorait pontosvesszővel kell lezárni, a szorzásjelet ki kell írni.
- 3.) A nagyobb-egyenlő, kisebb-egyenlő relációknál nem kell egyenlőséget írni.
- 4.) A célt (min vagy max) sor elején ki kell írni.
- 5.) A felkiáltójelek közé tett szöveget a program megjegyzésként kezeli.

A program indítása után begépeljük a modellt (legyen ez a 2. lapon lévő példa).

x1+x2+x4<100; 2*x2+2*x3+2*x4<160; 2*x1+2*x2+2*x3<100; x1+x3<60; max=6*x1+6*x2+5*x3+4*x4;

A Lingoban célfüggvényként szerepeltethetünk törtfüggvényt (ez a gyakorlatban sokszor előfordul), vagy más nem lineáris (pl. másodfokú) függvényt.

A megoldást a solve parancsra lépve kapjuk.

A megoldásból leolvasható mind a primál, mind a duál optimum:

Global optimal solution found.Objective value:545.0000Infeasibilities:0.000000Total solver iterations:4	A program globális optimumot talált, ehhez 4 lépésben jutott el.
	Emlékeztetőül a jelöléseinkkel:
VariableValueReductX135.000000.00X20.0000001.50X465.000000.00X315.000000.00	$\begin{array}{c} ced Cost \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ \hline \underline{X}_{o} = [35\ 0\ 15\ 65]^{*} \\ \underline{U}_{o} = [0\ 0\ 0\ 10]^{*} \end{array}$
RowSlack or SurplusD10.0000002.50020.0000000.750030.0000001.750410.000000.0005545.00001.000	Dual Price \underline{V}_{o} =[2,5 0,75 1,75 0]* 000 \underline{W}_{o} =[0 1,5 0 0]* 000 \underline{W}_{o} =[0 1,5 0 0]* 000 Az egyes optimális megoldások elhelyez- kedése a táblázaton jól látható.

Példa: Egy üzem 2 terméket gyárt, két eőforrás felhasználásával. Az egyes termékek egységnyi mennyiségébe az erőforrásokból 2, 2, illetve 1, 2 egységnyi épül be. A kapacitások felső korlátai: 3000 és 4000. A piaci igény az egyes termékekre maximum 1200, illetve1500 darab. A termékek eladási egységárai 110 és 80, az önköltségi egységárak: 50, 50. A gyártás fix költsége: 500. Adjuk meg azt a termékösszetételt, amelynél az egységnyi költségre eső fedezeti összeg maximális!

A matematikai modell célfüggvénye tört (hiperbolikus programozás):

!Hiperbolikus programozás szélsőértéke!
2*x1+x2<3000;
2*x1+2*x2<4000;
x1<1200;
x2<1500;
max=(60*x1+50*x2)/(50*x1+50*x2+500);

Local optimal solution found.					
Objecti	ive value:	1	.190083		
Infeasibilities:		().000000		
Extend	ed solver steps:		5		
Total s	olver iterations	•	25		
Variable	Value	Reduced Co	st		
X1	1200.000	0.000000			
X2	0.000000	0.1570931E-0	3		
Row	Slack or Surplus	Dual Price			
1	1600.000	0.000000			
2	0.000000	0.8196161E-	05		
3	1500.000	0.000000			
4	1.190083	1.000000			

A Lingoba történő adatbevitel módját is mutatja a modellünk.

A megoldást a solve gomb lenyomásával szinte azonnal megkapjuk:

A célfüggvény optimális (legnagyobb) értéke: $z_o=1,19$, ezt 25 lépésben számolta ki a Lingo.

Eredményül azt kaptuk, hogy ehhez csak az első terméket gyártsuk: **x**_o=[1200 0]*.

A táblázatból a többi optimális érték is kiolvasható.

A Lingo is lehetővé teszi azt, hogy egészértékűek legyenek a megoldások (integer programozás), és más számításokra (érzékenységvizsgálat!) is alkalmas.

Az internetről további más optimalizáló szoftverek tölthetők le, illetve konkrét gazdasági problémák megoldásához vásárolhatunk ilyeneket.