

MIKLÓS FERENCZI – MIKLÓS SZŐTS

MATHEMATICAL LOGIC FOR APPLICATIONS

2011

Abstract Contents

Sponsorship

Editorship

Referee

Technical editor

Copyright

ISBN

This book is recommended for those readers who have completed some introductory course in Logic. It can be used from the level MSc. It is recommended also to specialists who wish to apply Logic: software engineers, computer scientists, physicists, mathematicians, philosophers, linguists, etc. Our aim is to give a survey of Logic, from the abstract level to the applications, with an emphasis on the latter one. An extensive list of references is attached. As regards problems or proofs, for the lack of space, we refer the reader to the literature, in general. We do not go into the details of those areas of Logic which are bordering with some other discipline, e.g., formal languages, algorithm theory, database theory, logic design, artificial intelligence, etc. We hope that the book helps the reader to get a comprehensive impression on Logic and guide him or her towards selecting some specialization.

Key words and phrases: Mathematical logic, Symbolic logic, Formal languages, Model theory, Proof theory, Non-classical logics, Algebraic logic, Logic programming, Complexity theory, Knowledge based systems, Authomated theorem proving, Logic in computer science, Program verification and specification.

Acknowledgement of support:

Prepared within the framework of the project "Scientific training (matemathics and physics) in technical and information science higher education" Grant No. $T\acute{A}MOP-4.1.2-08/2/A/KMR-2009-0027$.

Prepared under the editorship of Budapest University of Technology and Economics, Mathematical Institute.

Referee:

Károly Varasdi

Prepared for electronic publication by: Ágota Busai

Title page design: Gergely László Csépány, Norbert Tóth

ISBN: 978-963-279-460-0

Copyright: © 2011–2016, Miklós Ferenczi, Miklós Szőts, BME

Contents

0	INT	TRODUCTION	2
1	ON	THE CONCEPT OF LOGIC	6
	1.1	Syntax	6
	1.2	Basic concepts of semantics	8
	1.3	Basic concepts of proof theory	11
	1.4	On the connection of semantics and proof theory	13
2	$\mathbf{CL}A$	ASSICAL LOGICS	16
	2.1	First-order logic	16
		2.1.1 Syntax	16
		2.1.2 Semantics	18
		2.1.3 On proof systems and on the connection of semantics and	
		proof theory	21
	2.2	Logics related to first-order logic	22
		2.2.1 Propositional Logic	22
		2.2.2 Second order Logic	24
		2.2.3 Many-sorted logic	26
	2.3	On proof theory of first order logic	27
		2.3.1 Natural deduction	27
		2.3.2 Normal forms	30
		2.3.3 Reducing the satisfiability of first order sentences to propo-	
		sitional ones	31
		2.3.4 Resolution calculus	33
		2.3.5 Automatic theorem proving	36
	2.4	Topics from first-order model theory	37
		2.4.1 Characterizing structures, non-standard models	38
		2.4.2 Reduction of satisfiability of formula sets	41
		2.4.3 On non-standard analysis	42
3	NO	N-CLASSICAL LOGICS	46
	3.1	Modal and multi-modal logics	46
	3.2	Temporal logic	49
	3.3	Intuitionistic logic	51
	3.4	Arrow logics	54
		3.4.1 Relation logic (RA)	54
		3.4.2 Logic of relation algebras	54
	3.5	Many-valued logic	55

MATHEMATICAL LOGIC FOR APPLICATIONS

	3.6	Probability logics	57	
	5.0	Probability logics	57	
		3.6.2 Connections with the probability theory	60	
4	LO	GIC AND ALGEBRA	62	
	4.1	8	63	
	4.2	Algebraization of first-order logic	66	
5	LO	GIC in COMPUTER SCIENCE	68	
	5.1	Logic and Complexity theory	68	
	5.2	Program verification and specification	72	
		5.2.1 General introduction	72	
		5.2.2 Formal theories	74	
	- 0	5.2.3 Logic based software technologies	78	
	5.3	Logic programming	81	
		5.3.1 Programming with definite clauses	82	
			84 87	
		5.3.3 A general paradigm of logic programming	88	
		5.5.4 I Toblems and trends	00	
6	KN	- · · · · - · · · · · · · · · · ·	93	
	6.1	0	94	
		T T	94	
		1.00	95	
		6.1.3 Non-monotonic consequence relations	97	
	6.2	Plausible inference	99	
	6.3	Description Logic	102	
Bi	bliog	graphy 1	06	
Index				

2