1.1	Vladimir Igorevich Arnold, 12 June 1937 - 3 June 2010 [Source: http://en.wikipedia.org/wiki/File: Vladimir_Arnold-1.jpg, a file from the Wikimedia Commons that is a freely licensed media file repository.]	16
1.2	Open kinematic chain of robots	22
2.1	Marius Sophus Lie (1842–1899) studied the continuous transformation groups by considering their tangent space and their generating vector fields in his Theses "On a Class of Geometric Transformations" [Source: http: //en.wikipedia.org/wiki/File:Sophus_Lie.jpg, Wikimedia Commons, a freely licensed media file repository]	29
2.2	The schematic geometric description of a Lie group	34
2.3	Emmy Noether's picture [source: http://en.wikipedia.org/wiki/File:Noether.jpg. This image is in the public domain because its copyright has expired.]	38
3.1	Ludwig Eduard Boltzmann (1844-1906) Austrian physicist [source: http://en.wikipedia.org/wiki/File: Boltzmann2.jpg, Wikimedia Commons, a freely licensed media file repository]	46
3.2	Interpretation of mechanical work	52

6.1	Time-dependence of the concentration of the catalyst materials <i>X</i> (solid line) and <i>Y</i> (dashed line) in the Brusselator model	67
6.2	The phase trajectories of the of concentrations of the catalyst materials \dot{X} vs. X (solid line) and \dot{Y} vs. Y (dashed line) in the Brusselator model	68
6.3	The real parts of the matrix of the perturbation approximation used for studying the stability of the trajectories of the Brusselator model (the straight dashed line is not an eigenvalue: it corresponds to the constant zero)	69
6.4	The imaginary parts of the matrix of the perturbation approximation used for studying the stability of the trajectories of the Brusselator model	70
6.5	Time-dependence of the concentration of the catalyst materials X (solid line) and Y (dashed line) in the Brusselator model for a stable stationary solution	75
6.6	The phase trajectories of the of concentrations of the catalyst materials \dot{X} vs. X (solid line) and \dot{Y} vs. Y (dashed line) in the Brusselator model for a stable stationary solution	76
6.7	The real parts of the matrix of the perturbation approximation used for studying the stability of the trajectories of the Brusselator model for a stable stationary solution (the horizontal dashed line is not an eigenvalue: it denotes the exactly zero line)	77
6.8	The imaginary parts of the matrix of the perturbation approximation used for studying the stability of the trajectories of the Brusselator model for a stable stationary solution	78
6.9	Time-dependence of the concentration of the catalyst materials X and Y for close initial values in the Brusselator model in the case of a stable stationary solution	79
6.10	The phase trajectories of the of concentrations of the catalyst materials \dot{X} vs. X and \dot{Y} vs. Y in the Brusselator model in the case of a stable stationary solution	80

6.11	Time-dependence of the concentration of the materials	
	$X := [HBrO_2]$ (black solid line), $Y := [Br^-]$ (gray dotted	
	line), and $Z := [Ce^{4+}]$ (black dashed line) in the FKN	
	model of the Belousov-Zhabotinsky reaction	81
6.12	The phase trajectories of the of concentrations of the	
	materials $X := [HBrO_2]$ ((a) black solid line), $Y := [Br^-]$	
	((b) grav line), and $Z := [Ce^{4+}]$ ((c) black dashed line) in	
	the FKN model of the Belousov-Zhabotinsky reaction	82
613	Time-dependence of the concentration of the materials	
0.12	$X := [HBrO_2]$ ((a) black solid line) $Y := [Br^{-1}]$ ((b) grav	
	dotted line) and $Z := [Ce^{4+}]$ ((c) black dashed line) in the	
	FKN model of the Belousov-Zhabotinsky reaction	
	(zoomed excernts)	83
6 14	The phase trajectories of the of concentrations of the	05
0.14	materials $X := [HBrO_2]$ ((a) black solid line) $Y := [Br^{-1}]$	
	((b) gray solid line) and $Z := [Ce^{4+}]$ ((c) gray dashed line)	
	in the FKN model of the Belousov-Zhabotinsky reaction	
	(zoomed excernts)	8/
6 1 5	Time dependence of the concentration of the materials	0-
0.15	$Y := [HPrO_{2}]$ ((a) block solid line) $Y := [Pr^{-1}]$ (b) grow	
	$A := [IIDIO_2]$ ((a) black solid line), $I := [DI]$ ((b) glay dotted line, almost equal to zero) and $Z := [Ce^{4+1}]$ ((c)	
	block deshed line) in the EKN model of the	
	Balaysay Zhabatingly reaction for $f = 0.4$	05
(1)	Belousov-Zhabounisky reaction for $f = 0.4$	85
0.10	The phase trajectories of the of concentrations of the $[H, P] = [H, P]$	
	materials $X := [HBrO_2]$ ((a) black solid line), $Y := [Br]$	
	((b) gray dotted line), and $Z := [Ce^{+}]$ ((c) black dashed	
	line) in the FKN model of the Belousov-Zhabotinsky	0.6
0.1	reaction for $f = 0.4$	86
8.1	Explanation for the <i>Residuum Theorem</i> : by properly	
	"completing" the integral around contour & the	
	contributions of the straight lines \mathscr{S}_1 , \mathscr{S}_2 and \mathscr{S}_3 cancel,	
	and f is analytical within the closed loop defined by \mathcal{G}_3 ,	
	$C_3, -S_3, S_3S_2, S_2, C_2, -S_2, S_2S_1, S_1, C_1, -S_1, S_1S_3,$	
	therefore the integral is zero; on the other hand around \mathscr{C}_1 ,	
	\mathscr{C}_2 and \mathscr{C}_3 the integration happens clock-wisely, therefore	120
0 0	$\mathfrak{g}_{\mathscr{C}} - \mathfrak{g}_{\mathscr{C}_1} - \mathfrak{g}_{\mathscr{C}_2} - \mathfrak{g}_{\mathscr{C}_3} = 0$	138
8.2	The integration contour for the Laurent Series	139

8.3	Explanation of the Kramers-Krönig relations that are generally valid until the linear approximation and the use of the concept of transfer function is acceptable	147
9.1	Approaching the limit cycle of the van der Pol oscillator "from inside": the phase trajectory (upper graph) and the $q(t)$ and $\dot{q}(t)$ functions (lower chart)	153
9.2	Approaching the limit cycle of the van der Pol oscillator "from outside": the phase trajectory (upper graph) and the $q(t)$ and $\dot{q}(t)$ functions (lower chart)	154
9.3	The typical nonlinear response of the van der Pol oscillator when it is excited by $g(t) = A_0 \sin(\omega_0 t)$ with $A_0 = 6$ and initial state $q_0 = 0.1$, $\dot{q}_0 = 0$: the phase trajectory (upper graph) and the $q(t)$ and $\dot{q}(t)$ functions (lower chart)	155
9.4	The typical nonlinear response of the van der Pol oscillator when it is excited by $g(t) = A_0 \sin(\omega_0 t)$ with $A_0 = 6$ and some different initial state: the phase trajectory (upper graph) and the $q(t)$ and $\dot{q}(t)$ functions (lower chart)	156
9.5	The response of the van der Pol oscillator when it is excited by $g(t) = A_0 \sin(\omega_0 t)$ with $A_0 = 8$ and initial state $q_0 = 0.1, \dot{q}_0 = 0$	158
9.6	The stability investigation of the trajectory of the van der Pol oscillator when it is excited by $g(t) = A_0 \sin(\omega_0 t)$ with $A_0 = 8$ and initial state $q_0 = 0.1$, $\dot{q}_0 = 0$: the spectrum of matrix <i>A</i> in (9.5)	159
9.7	The stability investigation of the trajectory of the free van der Pol oscillator of initial state $q_0 = 0.1$, $\dot{q}_0 = 0$: the spectrum of matrix <i>A</i> in (9.5)	160
9.8	Typical phase trajectory of the periodically excited <i>Duffing Oscillator</i> (\dot{x} vs. x)	161
9.9	The trajectory of the Lorenz system of parameters $\sigma = 5$, $\beta = 8/3$, $\rho = 40$, and initial conditions $x_0 = 0.1$, $y_0 = 0.1$, and $z_0 = 0.1$	162
9.10	The trajectory of the Lorenz system of parameters $\sigma = 5$, $\beta = 8/3$, $\rho = 40$, and initial conditions $x_0 = 0.1$, $y_0 = 0.1$, and $z_0 = 0.1$	163

	List of figures	311
9.11	The trajectory of the Lorenz system of parameters $\sigma = 5$, $\beta = 8/3$, $\rho = 40$, and initial conditions $x_0 = 0.1$, $y_0 = 0.1$, and $z_0 = 0.1$	164
9.12	The stability investigation for trajectory of the Lorenz system of parameters $\sigma = 5$, $\beta = 8/3$, $\rho = 40$, and initial conditions $x_0 = 0.1$, $y_0 = 0.1$, and $z_0 = 0.1$: the real and imaginary parts of matrix A in Eq. (0.0)	165
9.13	The typical behavior of the Rössler System from two different aspects for $a = 0.2$, $b = 0.2$, and $c = 5.7$ with initial values $r_{c} = 1$ where $r_{c} = 1$	103
9.14	The typical behavior of the Rössler System: the (x, y) plane for $a = 0.2$, $b = 0.2$, and $c = 5.7$ with initial values	100
9.15	$x_0 = 1$, $y_0 = 0$, and $z_0 = 1$ Period 1 orbit for $a = 0.1$, $b = 0.1$, and $c = 4$, with the	167
9.16	initial conditions $x_0 = 0$, $y_0 = -6.625$, and $z_0 = 0$ Period 2 orbit for for $a = 0.1$, $b = 0.1$, and $c = 6$, with the initial conditions $x_0 = 0$, $y_0 = -6.625$, and $z_0 = 0$	169
9.17	Period 3 orbit for $c = 12$, with the initial conditions $x_0 = 0$, $y_0 = -18.15$, and $z_0 = 0$	170
9.18	Stability analysis of the period 3 orbit of Rössler's system for $c = 12$, with the initial conditions $x_0 = 0$, $y_0 = -18.15$, and $z_0 = 0$	172
9.19	The $x(n+1)$ vs. $x(n)$ diagram for the Logistic Function with slowly increasing "order parameter" λ revealing period doubling and bifurcations	175
9.20	The fixed points vs. the "order parameter" λ for the Logistic Function revealing period doubling and	177
9.21	The fixed points vs. the "order parameter" λ for the Logistic Function revealing period doubling and	1//
9.22	bifurcation in the $\lambda \approx \in [3.40, 3.57]$ and $[3.56, 3.74]$ The chaotic motion of two coupled Fitz-Hugh-Nagumo	178
9 23	response to purely sinusoidal excitation)	181
1.23	1984] completed by a current generator	182

9.24	The chaotic motion of the free (i.e. $i_u \equiv 0$) Chua circuit: v_{C1} versus i_L	183
9.25	The chaotic motion of the free (i.e. $i_u \equiv 0$) Chua circuit: v_{C2} versus i_L	184
9.26	The chaotic motion of the free (i.e. $i_u \equiv 0$) Chua circuit: v_{C1} versus v_{C2}	185
9.27	Discretized spatial and continuous-time hydrodynamic model of freeway traffic	186
9.28	Arrangement in worksheet "Munka1" for the calculation of the stationary densities and velocities for the hydrodynamic model of freeway traffic	189
9.29	Arrangement in worksheet "Munka2" for polynomial function fitting to the calculated stationary densities and velocities for the hydrodynamic model of freeway traffic	193
9.30	Stationary densities and velocities and their 3rd order polynomial approximations for the hydrodynamic model of freeway traffic at $q_0 = 100$ vehicle/h: \hat{r}_2 in vehicle/h, velocities in km/h , and densities in vehicle/km units	194
9.31	Stationary densities and velocities and their 3rd order polynomial approximations for the hydrodynamic model of freeway traffic at $q_0 = 800$ vehicle/h: \hat{r}_2 in vehicle/h, velocities in km/h , and densities in vehicle/km units	195
9.32	The 3rd order polynomial approximation of the dependence on \hat{q}_0 of the 0th order coefficient of the polynomials of \hat{r}_2 (for $\hat{\rho}_1$, $\hat{\rho}_2$, $\hat{\rho}_3$ in the upper graph, for \hat{v}_1 , \hat{v}_2 , \hat{v}_3 in the lower graph)	196
9.33	The 3rd order polynomial approximation of the dependence on \hat{q}_0 of the 1st order coefficient of the polynomials of \hat{r}_2 (for $\hat{\rho}_1$, $\hat{\rho}_2$, $\hat{\rho}_3$ in the upper graph, for \hat{v}_1 , \hat{v}_2 , \hat{v}_3 in the lower graph)	197
9.34	The 3rd order polynomial approximation of the dependence on \hat{q}_0 of the 2nd order coefficient of the polynomials of \hat{r}_2 (for $\hat{\rho}_1$, $\hat{\rho}_2$, $\hat{\rho}_3$ in the upper graph, for \hat{v}_1 , \hat{v}_2 , \hat{v}_3 in the lower graph)	198

9.35	The 3rd order polynomial approximation of the dependence on \hat{q}_0 of the 3rd order coefficient of the polynomials of \hat{r}_2 (for $\hat{\rho}_1$, $\hat{\rho}_2$, $\hat{\rho}_3$ in the upper graph, for \hat{v}_1 , \hat{v}_2 , \hat{v}_3 in the lower graph)	199
9.36	Representative example of the results of stability analysis: the real and imaginary parts of the matrix in (9.40 for $\hat{v}_4 = 120 km/h$ and $\hat{q}_0 = 800 vehicle/h$)	203
9.37	Numerical solution of the equations of motion of the financial model in [Ma et Chen, 2001]	205
10.1	The MS EXCEL worksheet of the simple example for the Receding Horizon Controller	211
10.2	Solutions for $A = 1$, $B = 3$, and $N = 8$	212
10.3	Solutions for $A = 1$, $B = 3$, and for relaxed $N = 1$	213
10.4	Solutions for the more relaxed case of $A = 1, B = 0.1$, and $N = 1$	214
10.5	Trajectory tracking of the Van der Pol oscillator under <i>Robust VS/SM Control</i> for the nominal trajectory $q^{N}(t) = A_{0} \sin(\omega_{0}t)$ with $A_{0} = 4$ and initial state $q_{0} = 0$, $\dot{q}_{0} = 0$	218
10.6	Trajectory tracking error of the Van der Pol oscillator under <i>Robust VS/SM Control</i> for the nominal trajectory $q^{N}(t) = A_{0} \sin(\omega_{0}t)$ with $A_{0} = 4$ and initial state $q_{0} = 0$, $\dot{q}_{0} = 0$	219
10.7	Phase trajectory tracking of the Van der Pol oscillator under <i>Robust VS/SM Control</i> for the nominal trajectory $q^{N}(t) = A_{0} \sin(\omega_{0}t)$ with $A_{0} = 4$ and initial state $q_{0} = 0$, $\dot{q}_{0} = 0$	220
10.8	Near-zero fluctuation of the Error Metrics of the Van der Pol oscillator under <i>Robust VS/SM Control</i> for the nominal trajectory $q^N(t) = A_0 \sin(\omega_0 t)$ with $A_0 = 4$ and initial state $q_0 = 0, \dot{q}_0 = 0$	221
10.9	The driving force of the Van der Pol oscillator under <i>Robust VS/SM Control</i> for the nominal trajectory $q^{N}(t) = A_{0} \sin(\omega_{0}t)$ with $A_{0} = 4$ and initial state $q_{0} = 0$, $\dot{a}_{0} = 0$	222
	$q_0 - 0$	LLL

10.10	Aleksandr Mikhailovich Lyapunov, 1857-1918. (From the	
	Wikimedia Commons that is a freely licensed media file	
	repository.)	223
10.11	Application of functions of class κ in Lyapunov's stability	
	theorem	224
10.12	The application paradigm: the Cart+Double Pendulum	
	System	228
10.13	Phase trajectory tracking of the AID controller: $q_1^{Nominal}$: (a) black solid line, $q_2^{Nominal}$: (b) black solid line,	
	$q_3^{Nominal} \equiv 0, q_1$: (c) gray dashed line, q_2 : (d) black dashed	
	line, q_3 : (e) black dash-dot line	230
10.14	Trajectory tracking error of the AID controller: q_1 : (a)	
	black solid line, q_2 : (b) gray dashed line, q_3 : (c) black	001
	dash-dot-dot-dash line	231
10.15	Joint generalized forces of the AID controller: Q_1 : (a)	
	black solid line, Q_2 : (b) black dashed line, Q_3 : (c) gray	221
10.16	tassieu inie	231
10.10	Tuned parameter p_1 of the AID controller vs. time	252
10.17	Tuned parameter p_2 of the AID controller vs. time	232
10.18	Tuned parameter p_3 of the AID controller vs. time	233
10.19	Phase trajectory tracking of the non-adaptive controller: $q_1^{Nominal}$: (a) black solid line, $q_2^{Nominal}$: (b) black solid line,	
	$q_3^{Nominal} \equiv 0, q_1$: (c) gray dashed line, q_2 : (d) black dashed	
	line, q_3 : (e) black dash-dot line	233
10.20	Trajectory tracking error of the non-adaptive controller:	
	q_1 : black solid line, q_2 : black dashed line, q_3 : gray	224
	dash-dot line	234
10.21	Q_1 : black solid line, Q_2 : black dashed line, Q_3 : gray	224
	dash-dot-dash line	234
10.22	Phase trajectory tracking of the AID controller with	
	friction at the axies: q_1^{commut} : (a) black solid line, q_2^{commut} : (b) black solid line, $s_1^{\text{commut}} = 0$, $s_1(s)$ area dash	
	(b) black solid line, $q_3^{-1} = 0$, q_1 : (c) gray dense dash line, $q_3: (d)$ gray deshed line, $q_3: (a)$ black dash dot line	226
10.22	Trained on the second	250
10.23	friction at the axles: a.: black solid line, a.: gray deshed	
	line q_2 : black dash-dot-dot line	226
	1110, 93. Ulack dash-dol-dol 1110	250

10.24	Joint generalized forces of the AID controller with friction at the axles: Q_1 : black solid line, Q_2 : black dashed line, Q_3 : gray dash-dot-dot-dash line	237
10.25	The generalized friction forces at the axles under the effect of the <i>AIDC</i> controller: Q_1 : black solid line, Q_2 : black dashed line, Q_3 : gray dash-dot-dot-dash line	237
10.26	Tuned parameter p_1 of the <i>AIDC</i> controller vs. time with friction at the axles	238
10.27	Tuned parameter p_2 of the AID controller vs. time with friction at the axles	238
10.28	Tuned parameter p_3 of the AID controller vs. time with friction at the axles	239
10.29	The "exact" and "approximate" models of the Cart-Beam-Hamper System	242
10.30	The trajectory and phase trajectory (i.e. the \dot{q}_i vs q_i graphs) tracking of the MRAC controller: nominal trajectory: q_1 : (a), q_2 : (b), q_3 : (c); simulated trajectory: q_1 :	
	(d), q_2 : (e), q_3 : (f) lines	243
10.31	The $\alpha(t)$ control parameter and the additional adaptive force <i>D</i> of the MRAC controller (<i>Q</i> ₁ : black solid, <i>Q</i> ₂ : gray dense dash <i>Q</i> ₂ : black dashed lines)	244
10.32	Acceleration tracking of the MRAC controller: the nominal values \ddot{q}_1 : (1), \ddot{q}_2 : (2), \ddot{q}_3 : (3); the kinematically desired values: \ddot{q}_1 : (1'), \ddot{q}_2 : (2'), \ddot{q}_3 : (3'); the simulated values: \ddot{q}_1 : (1"), \ddot{q}_2 : (2"), \ddot{q}_3 : (3"); (top); The trajectory tracking error: q_1 : black solid line, q_2 : gray dense dash	277
	line, q_3 : black dashed line (bottom)	245
10.33	Adaptive control in the case of the large stable limit cycle: the features of the simulated trajectory: v_{C1} vs. i_L , and v_{C2}	
	vs. i_L	248
10.34	Adaptive control in the case of the large stable limit cycle: the features of the simulated trajectory: v_{C1} vs. v_{C2} , and i_u	249
10.35	Comparison of the properties of the non-adaptive (at the top) and the adaptive (at the bottom) controllers in the case of the large stable limit cycle: the features of the simulated	
	trajectory: the trajectory tracking	250

10.36	Comparison of the properties of the non-adaptive (at the top) and the adaptive (at the bottom) controllers in the case of the large stable limit cycle: the features of the simulated trajectory: v_{C2} vs. v_{C2}^{Ref}	251
10.37	Comparison of the properties of the non-adaptive (at the top) and the adaptive (at the bottom) controllers in the case of the large stable limit cycle: the features of the simulated trajectory: the "Desired", "Realized", and the adaptively deformed "Required" \dot{v}_{c2} signals	252
10.38	Adaptive control in the case of the chaotic trajectory: the features of the simulated trajectory: v_{C1} vs. i_L , and v_{C2} vs. i_L	253
10.39	Adaptive control in the case of the chaotic trajectory: the features of the simulated trajectory: v_{C1} vs. v_{C2}	254
10.40	Comparison of the properties of the non-adaptive (at the top) and the adaptive (at the bottom) controllers in the case of the large stable limit cycle: the features of the simulated trajectory: trajectory tracking	255
10.41	Comparison of the properties of the non-adaptive (at the top) and the adaptive (at the bottom) controllers in the case of the large stable limit cycle: the features of the simulated trajectory: v_{C2} vs. v_{C2}^{Ref}	256
10.42	Comparison of the properties of the non-adaptive (at the top) and the adaptive (at the bottom) controllers in the case of the large stable limit cycle: the features of the simulated trajectory: the "Desired", "Realized", and the adaptively deformed "Required" \dot{v}_{C2} signals	257
10.43	The block diagram of the RFPT-based controller used for the synchronization of the motion of two different Duffing Oscillators	258
10.44	Trajectory tracking of the non-adaptive control for the periodically excited <i>Duffing Oscillator</i> : the phase trajectories	259
10.45	Trajectory tracking of the non-adaptive control for the periodically excited <i>Duffing Oscillator</i> (the nominal and the realized trajectories cannot be distinguished in the chart)	260

10.46	Desired (black solid line), realized (gray dash-dot line), and required (covered by the black solid line) charts of the non-adaptive control for the periodically excited <i>Duffing</i> <i>Oscillator</i>	261
10.47	Trajectory tracking of the adaptive control for the periodically excited <i>Duffing Oscillator</i> (nominal: black solid line, realized: covered by the black solid line)	262
10.48	Desired (black solid line), realized (covered by the black solid line), and required (black dashed line) charts of the adaptive control for the periodically excited <i>Duffing</i>	
	Oscillator	263
10.49	Tracking of the emission factor in the non-adaptive case $([vehicle \cdot km^2/h^3]$ vs. time [h])	265
10.50	Tracking of the emission factor in the adaptive case $([vehicle \cdot km^2/h^3]$ vs. time [h])	265
10.51	The velocities [km/h], densities [vehicle/km], and the control signal r_2 [vehicle/h] vs. time in the adaptive case	
	vs. time [h])	266
10.52	The desired, realized, and adaptive deformed E_f [<i>vehicle</i> · km^2/h^3] vs. time [h] in the adaptive case	267
10.53	Trajectory tracking for the non-adaptive (top) and tuned adaptive (bottom) cases – the nominal trajectories: q_1^N : black solid line, q_2^N : gray dense dashed line, q_1 : black	270
	dashed line, q_2 : black dash-dot line	270
10.54	Phase trajectory tracking for the non-adaptive (top) and tuned adaptive (bottom) cases – the nominal trajectories: q_1^N : gray solid line, q_2^N : gray dense dashed line, q_1 : black	
	dashed line, q_2 : black solid line	271
10.55	Exerted control forces for the non-adaptive (top) and tuned adaptive (bottom) cases – for Q_1^N : black solid, Q_2^N : gray dashed and dotted lines	272
10.56	Trajectory tracking error for the non-adaptive (top), tuned	212
	cases – for q_1 : black solid, q_2 : gray dashed lines	273
10.57	Accelerations for the non-adaptive (top), tuned adaptive (middle), and adaptive without tuning (bottom) cases	274

10.58	Response error for the non-adaptive (top), tuned adaptive (middle), and adaptive without tuning (bottom) cases	275
10.59	Weights of voting for the tuned adaptive case: for 10^{-8} : black solid, 10^{-7} : black dash-dot, 10^{-6} : black dashed lines	276
10.60	The novel concept of Model Reference Adaptive Controllers based on " <i>Robust Fixed Point Transformations</i> "	276
10.61	The trajectory and phase trajectory of the non-adaptive controller: nominal: black solid, realized trajectory: gray dashed lines	278
10.62	The forces of the non-adaptive controller: Exerted: black solid, Desired: black dense dashed, recalculated from the Reference Model (Ref): black dashed lines (top), and the accelerations: nominal: black solid, desired: black dense dashed, and realized: gray dashed lines (bottom)	279
10.63	The trajectory and phase trajectory of the adaptive controller without any tuning: nominal: black solid, realized trajectory: gray dashed lines	280
10.64	The forces of the adaptive controller without any tuning (strongly zoomed figures): Exerted: gray solid, Desired: black solid, recalculated from the Reference Model (Ref): black dashed lines (top), and the accelerations: nominal: black solid, desired: gray solid, and realized: black dashed lines (bottom)	281
10.65	The tracking error of the adaptive controller without any tuning (apart from the initial transients)	282
10.66	The details of chattering formation when the controller quits its region of convergence: the consecutive x_n points are denoted by the + symbols, the appropriate response values are denoted by the × symbols, r^d is denoted by the circled × symbols [from [Tar et Várkonyi, 2012]]	283
10.67	The details of chattering formation when the controller quits its region of convergence: the consecutive x_n points versus time when $K = 7 \times 10^3$, $A = 10^{-2.5}$, and $B = -1$ [from [Tar et Várkonvi, 2012]]	284
		∠04

10.68	The details of chattering formation when the controller quits its region of convergence when $K = 7 \times 10^3$, $A = 10^{-3.5}$, and $B = -1$: the consecutive x_n points are denoted by the + symbols, the appropriate response values are denoted by the × symbols, r^d is denoted by the circled × symbols [from [Tar et Várkonyi, 2012]]	285
10.69	The details of chattering formation when the controller quits its region of convergence: the consecutive x_n points versus time when $K = 7 \times 10^3$, $A = 10^{-3.5}$, and $B = -1$ [from [Tar et Várkonyi, 2012]]	286
10.70	The details of the stable regime when $K = 7 \times 10^3$, $A = 10^{-4}$, and $B = -1$: the consecutive x_n points are denoted by the + symbols, the appropriate response values are denoted by the × symbols, r^d is denoted by the circled × symbols [from [Tar et Várkonyi, 2012]]	287
10.71	The details of the stable regime: the consecutive x_n points versus time when $K = 7 \times 10^3$, $A = 10^{-4}$, and $B = -1$ [from [Tar et Várkonyi, 2012]]	288
10.72	The trajectory and phase trajectory of the adaptive controller with tuning: the nominal and the realized trajectories cannot be distinguished in the charts	289
10.73	The tracking error of the adaptive controller with tuning (apart from the initial transients)	290
10.74	The forces of the adaptive controller with tuning (original and strongly zoomed figures): Exerted: black solid, Desired: black dashed, recalculated from the Reference Model (Ref): gray dashed lines	291
10.75	The modification of the smallest value of the fuzzy comb of fine-tuning vs. time)	292
10.76	Certain projections of the motion of the <i>reference circuit</i> providing the reference trajectory $v_{C2}^{Ref}(t)$	293
10.77	Certain projections of the motion of the <i>reference circuit</i> providing the reference trajectory $v_{C2}^{Ref}(t)$	294

10.78	Trajectory tracking of the non-adaptive controller (reference signal: solid, simulated signal: dashed), the "desired" (solid), the "realized" (dashed), and the "required" (dash dot, now in complete coverage with the "desired" value) control currents vs. time in s units	295
10.79	The "nominal \equiv Reference" (solid), the "desired" (dashed), and the "realized" (dash dot) time-derivative of v_{C2} for the controlled system vs. time in <i>s</i> units in the case of non-adaptive control	296
10.80	Trajectory tracking of the adaptive controller (reference=solid, simulated=dashed), the " <i>desired</i> " (solid), the " <i>realized</i> " (dashed, completely covered by the solid line), and the " <i>required</i> " (*) control currents vs. time in <i>s</i> units	297
10.81	The "nominal=Reference" (solid), the "desired" (dashed), and the "realized" (dash dot) time-derivative of v_{C2} for the controlled system vs. time in s units in the case of adaptive control	298
10.82	The trajectory and phase trajectory (i.e. the \dot{q}_i vs q_i graphs) tracking of the novel MRAC controller: nominal trajectory: q_1 : (1), q_2 : (2), q_3 : (3) lines; simulated trajectory: q_1 : (1'), q_2 : (2'), q_3 : (3') lines	299
10.83	Acceleration tracking of the novel MRAC controller: the <i>nominal values</i> \ddot{q}_1 : gray solid, \ddot{q}_2 : black dashed, \ddot{q}_3 : gray solid; the <i>kinematically prescribed desired values</i> practically cannot be distinguished from the nominal ones, and the same holds for the realized ones (top); The trajectory tracking error: q_1 : black solid , q_2 : black dense dash, q_3 : black dashed lines (bottom)	300
10.84	The force/torque scheme of the novel MRAC controller: "Exerted": Q_1 : (1), Q_2 : (2), Q_3 : (3); the "Reference" (Q_1 : (1'), Q_2 : (2'), Q_3 : (3')) and the "Recalculated" (Q_1 : (1''), Q_2 : (2"), Q_3 : (3")) values are in each other's close vicinity	201
	and scarcely can be distinguished	301

10.85 Acceleration tracking of the non-adaptive controller: the *nominal values* \ddot{q}_1 : (1), \ddot{q}_2 : (2), \ddot{q}_3 : (3); the *kinematically desired values*: \ddot{q}_1 : (1'), \ddot{q}_2 : (2'), \ddot{q}_3 : (3'); the *simulated values*: \ddot{q}_1 : (1''), \ddot{q}_2 : (2''), \ddot{q}_3 : (3''); (top); The trajectory tracking error: q_1 : black solid , q_2 : black dense dash, q_3 : black dashed lines (bottom) 302