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A. Appendix
Appendix

A.1. Basic facts

It is convenient to introduce some notation for symmetric and Hermitian
matrices. A real matrix A is symmetric if A = AT . The sets of all n× n
symmetric matrices will be denoted by �n. A complex matrix is Hermitian
if A = A∗ = A

T
where the bar denotes the complex conjugate of each entry in

A. The sets of all n×n Hermitian matrices will be denoted by �n.

Definition A.1. Let A be an arbitrary matrix. A⊥ denotes a matrix with the
following properties.

Ker (A⊥) = Im (A) and A⊥A∗⊥ > 0, (A.1)

or with other words A∗⊥ is an arbitrary basis matrix in Ker (A∗).
Note that A⊥ exists if and only if A has linearly dependent rows. Also

note that, for a given A is not unique, but throughout this paper, any choice
is acceptable. And finally, it is obvious that A⊥A = 0, this latter property
justifies our notation.

Definition A.2. Let A be an arbitrary matrix. Aa denotes arbitrary basis
matrix in Ker (A). Note that Aa exists if and only if A has linearly dependent
columns. It is obvious that AAa = 0 and that A∗aAa > 0.

A.1.1. The Moore-Penrose Pseudo-inverse

Definition A.3. The pseudo-inverse A† of an m× n matrix A (whose entries
can be real or complex numbers) is defined as the unique n ×m matrix
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256 A. Appendix

satisfying all of the following four criteria:

AA†A = A (A.2)

A†AA† = A† (A.3)

(AA†)∗ = AA† (A.4)

(A†A)∗ = A†A (A.5)

Properties:

A† exists and is unique for any matrix A. (A.6)

If A is invertible then A† = A−1. (A.7)

A† of a zero matrix is its transpose. (A.8)

(A†)† = A. (A.9)

(αA)† = α−1A† for α , 0. (A.10)

AA† orthogonal projector ontoIm (A). (A.11)

A†Aorthogonal projector ontoIm (A∗). (A.12)

(I−A†A)orthogonal projector ontoKer (A). (A.13)

ker(A†) = (Im (A))⊥. (A.14)

im(A†) = (Ker (A))⊥. (A.15)

If the columns of A are linearly independent, then A∗A is invertible and:

A† = (A∗A)−1A∗ case m > n.

It follows that A† is a left inverse of A, i.e., A†A = I.
If the rows of A are linearly independent, then AA∗ is invertible and:

A† = A∗(AA∗)−1 case m < n.

It follows that A† is a right inverse of A, i.e., AA† = I.

A.1.2. Singular value decomposition

Theorem A.4 (SVD). Suppose A is an m×n matrix whose entries come from
the field �, which is either the field of real numbers or the field of complex
numbers. Then there exists a factorization of the form

A = UΣV∗,
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A.1. Basic facts 257

where U is an m×m unitary matrix over �, the matrix Σ is m× n diagonal
matrix with nonnegative real numbers on the diagonal, and V∗ is an n×
n unitary matrix over �. Such a factorization is called a singular-value
decomposition of A. A common convention is to order the diagonal entries
Σi,i in non-increasing fashion. In this case, the diagonal matrix Σ is uniquely
determined by A (though the matrices U and V are not). The diagonal entries
of Σ are known as the singular values of A. More precisely Σ has the form

Σ = diag(σ1,σ2, . . . ,σp)

where p = min(m,n) and

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0

Remark A.5 (Pseudo-inverse). The singular value decomposition can be
used for computing the pseudo-inverse of a matrix. Indeed, the pseudo-
inverse of the matrix A with singular value decomposition A = UΣV∗ is

A† = VΣ†U∗,

where Σ† is the pseudo-inverse of Σ with every nonzero entry replaced by
its reciprocal.

A.1.3. Schur complement and Schur lemma

Lemma A.6 (Schur Decomposition). Suppose A or D respectively is non
non-singular. Then(

A B
C D

)
=

(
I 0

CA−1 I

)(
A 0
0 D−CA−1B

)(
I A−1B
0 I

)
or (

A B
C D

)
=

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
Lemma A.7 (Schur Lemma). Let Q and R be symmetric matrices. The
following are equivalent.(

Q S
S T R

)
≥ 0, (A.16)

R ≥ 0, Q−S R†S T ≥ 0, S (I−RR†) = 0 (A.17)

Q ≥ 0, R−S T Q†S ≥ 0, (I−QQ†)S = 0 (A.18)
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Lemma A.8 (Symmetric Schur Lemma). Let Q and R be symmetric matri-
ces. The following are equivalent.

(
Q S
S T R

)
> 0, (A.19)

R > 0, Q−S R−1S T > 0. (A.20)

Q > 0, R−S T Q−1S > 0. (A.21)

We note that the equality S (I−RR†) = 0 is redundant since R† = R−1.

Lemma A.9. Suppose that I−AB is nonsingular. Then

A(I−BA)−1 = (I−AB)−1A

Lemma A.10 (Matrix Inversion Lemma). Let A, C and D−1 +CA−1B be non-
singular. Then

(A + BDC)−1 = A−1−A−1B(D−1 +CA−1B)−1CA−1.

Suppose A and D are both non-singular. Then

(A−BD−1C)−1 = A−1 + A−1B(D−CA−1B)−1CA−1.

Let

M =

(
A B
C D

)
Let us suppose that M is non-singular. Moreover, suppose A or D respec-
tively is non-singular and let V = D−CA−1B or W = A−BD−1C. Then(

A B
C D

)−1

=

(
A−1 + A−1BV−1CA−1 −A−1BV−1

−V−1CA−1 V−1

)
or (

A B
C D

)−1

=

(
W−1 −W−1BD−1

−D−1CW−1 D−1 + D−1CW−1BD−1

)
If M, A and D are all non-singular then(

A B
C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)
.
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A.1.4. Inertia

Definition A.11. The inertia of a Hermitian P ∈�n×n is defined as

in(P) = (in−(P), in0(P), in+(P)) (A.22)

with in−(P), in0(P), in+(P) denoting the number of negative, zero and
positive eigenvalues of P. Moreover, for any subspace S ⊂ �n the inertia
in(P|S) is defined by in(S ∗PS ), where S is an arbitrary basis matrix of S.

Example A.12. Consider P =

(
−1 0
0 1

16

)
and a (maximal) negative subspace

S =

(
1
2

)
. However, its complementary subspace S⊥ =

(
−2
1

)
is also a

(maximal) negative subspace! As it is expected
(
1 −2
2 1

)
is not a negative

subspace, since the eigenvalues of
(
−1 + 1/4 2 + 1/8
2 + 1/8 −4 + 1/16

)
are of different

sign.
But S⊥ is a positive subspace of P−1.

Lemma A.13 (Inertia Lemma). If A is nonsingular then

in
(

A C
C∗ B

)
= in(A) + in(B−C∗A−1C). (A.23)

Lemma A.14 (Dualization Lemma). Let P be a non-singular symmetric ma-
trix in�n×n and letU andV be two complementary subspaces withU⊕V=

�n. Then

xT Px < 0 for all x ∈ U\{0} and xT Px ≥ 0 for all x ∈ V (A.24)

is equivalent to

xT P−1x > 0 for all x ∈ U⊥\{0} and xT P−1x ≤ 0 for all x ∈ V⊥. (A.25)

An other formulation: let S be a subspace with in0(P|S) = 0. Then

in(P) = in(P|S) + in(P−1|S⊥). (A.26)
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Example A.15. Consider P =

(
−1 0
0 1

16

)
and a (maximal) negative subspace

S =

(
1
2

)
. However, its complementary subspace S⊥ =

(
−2
1

)
is also a

(maximal) negative subspace! As it is expected
(
1 −2
2 1

)
is not a negative

subspace, since the eigenvalues of
(
−1 + 1/4 2 + 1/8
2 + 1/8 −4 + 1/16

)
are of different

sign.
But S⊥ is a positive subspace of P−1.

A.2. Extensions of positive definite matrices

Lemma A.16. Let the matrix P be partitioned as

P =

(
A X
X∗ B

)
(A.27)

where A > 0 and B > 0. Then P > 0 if and only if X = A1/2KB1/2, where
‖K‖ < 1.

Proof:. The matrix P is similar to the matrix(
A−1/2 0

0 B−1/2

)(
A X
X∗ B

)(
A−1/2 0

0 B−1/2

)
=

(
I Y

Y∗ I

)
(A.28)

with Y = A−1/2XB−1/2. Inequality(
I Y

Y∗ I

)
> 0 (A.29)

is equivalent to I−YY∗ > 0 and I−Y∗Y > 0 which means that ‖Y‖ < 1.
Consequently P> 0 if and only if ‖B−1/2X∗A−1/2‖< 1, i.e., X = A1/2KB1/2,

where K is an arbitrary contraction (‖K‖ < 1).

Lemma A.17. Let the matrix P be partitioned as

P =

(
A X
X∗ B

)
. (A.30)

If A > 0 is given, X is arbitrary, B > 0 and B > X∗A−1X then P is positive
definite.
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A.2. Extensions of positive definite matrices 261

Proof:. Using the Schur complement, we have that A > 0, B > 0 and B−
X∗A−1X > 0 which implies that P > 0.

Theorem A.18. [Positive definite extension] Let X > 0 and Y > 0 be given.
Then there exists a positive definite matrix P that satisfy

P =

(
X M

M∗ X

)
and P−1 =

(
Y N
N∗ Y

)
, (A.31)

if and only is

(
X I
I Y

)
≥ 0. (A.32)

If the existence condition is satisfied, all such extensions are given as

P =

X1/2 0

0 X
1/2

( I K
K∗ I

)X1/2 0

0 X
1/2

 (A.33)

with an arbitrary X > 0 and a contraction K determined by the condition

KK∗ = I−X−1/2Y−1X−1/2. (A.34)

Hence, the dimension of the minimal extension is given by

nX,Y = rank(X−Y−1) = rank
(
X I
I Y

)
. (A.35)

Proof:. The assertion is a direct consequence of the matrix inversion lemma.
With the notation W = X−MX

−1
M∗ we have that Y = W−1 and

(
X M

M∗ X

)−1

=

 W−1 −W−1MX
−1

−X
−1

M∗W−1 X
−1

+ X
−1

M∗W−1MX
−1

 =

=

W−1 0

0 X
−1

+

I 0

0 X
−1

M∗

( 0 −W−1

−W−1 W−1

)I 0

0 MX
−1

 . (A.36)
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From Lemma A.16 follows the equality M = X1/2KX
1/2

. The expressions
for M,N and Y can be obtained by direct computation:

M = X1/2KX
1/2

(A.37)

N = −YX1/2KX
−1/2

= −Y MX
−1

= −X−1/2(I−KK∗)−1KX
−1/2

, (A.38)

Y = (X−MX
−1

M∗)−1 = X−1/2(I−KK∗)−1X−1/2, (A.39)

Y = X
−1/2 [

I + K∗(I−KK∗)−1K
]
X
−1/2

. (A.40)

The matrix P−1 can be expressed as

P−1 = W
(

(I−KK∗)−1 −(I−KK∗)−1K
−K∗(I−KK∗)−1 I + K∗(I−KK∗)−1K

)
W (A.41)

with

W =

X−1/2 0

0 X
−1/2

 , (A.42)

or as

P−1 =

Y 0

0 X
−1

+

I 0

0 X
−1

M∗

( 0 −Y
−Y Y

)(
I 0
0 MX−1

)
. (A.43)

Remark A.19. If one has strict inequality in (A.32) it follows that we have
I = X1/2LY1/2 with a suitable contraction ‖L‖ < 1, i.e., X−1/2 = LY1/2.

Then (A.39) reveals that I−KK∗ = LL∗.

A.3. Variable elimination

Lemma A.20 (Finsler’s Lemma). Let x ∈ �n, P = P∗ ∈ �n×n and V ∈ �q×n

with r = rank(V) < n. Then the following are equivalent

(1) P < 0 on Ker (V) (A.44)

(2) (Va)T PVa < 0 on �
n−r (A.45)

(3) ∃µ ∈� : P−µVT V < 0 on �
n (A.46)

(4) ∃X ∈�n×q : P + XV + VT XT < 0 on �
n (A.47)
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Inequality (3) can be replaced by the variant

(3b) ∃X = XT ∈�q×q : P + VT XV < 0 on �
n. (A.48)

Remark A.21. Inequality (4) can be also written in the form

P +

(
I
V

)T (
0 X

XT 0

)(
I
V

)
< 0, (A.49)

and also in the form (
I

XV

)T (
P I
I 0

)(
I

XV

)
< 0. (A.50)

Lemma A.22 (Projection Elmma). For arbitrary A,B and a symmetric P, the
LMI

P + AXB+ (AXB)∗ < 0 (A.51)

in the unstructured X has a solution if and only if

A∗x = 0 or Bx = 0 imply xT Px < 0 or x = 0. (A.52)

The conditions above are equivalent to

A⊥PA∗⊥ < 0 and B∗aPBa < 0. (A.53)

Remark A.23. Inequality (A.51) can be also written in the form

P +

(
AT

B

)T (
0 X

XT 0

)(
AT

B

)
< 0, (A.54)

and also in the form (
I

AXB

)T (
P I
I 0

)(
I

AXB

)
< 0. (A.55)

Inequalities in (A.53) can also be formulated as (A∗)∗aP(A∗)a < 0 and
(B∗)⊥P(B∗)∗⊥ < 0, respectively.
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Lemma A.24 (Elimination Lemma). Let Q = QT non-singular with in(Q) =

(m,0,n) and let us consider the quadratic matrix inequality(
I

C + AXB

)T

Q
(

I
C + AXB

)
< 0. (A.56)

Here C is of dimension n×m. This inequality has a solution if and only if

BT
a

(
I
C

)T

Q
(

I
C

)
Ba < 0 (A.57)

and

A⊥

(
−CT

I

)T

Q−1
(
−CT

I

)
AT
⊥ > 0. (A.58)

A.4. The Möbius transformation

Definition A.25. Let M ∈ �(m+n)×(m+n) (� =� or �) be partitioned as

M =

(
A B
C D

)
. (A.59)

The Möbius transformation TM is defined by the equation

TM(X) = (C + DX)(A + BX)−1 (A.60)

for X ∈ �n×m where (A + BX)−1 exists. Denote by

dom(TM) =
{
X ∈ �n×m : ∃(A + BX)−1

}
(A.61)

the domain of TM.
The dual Möbius transformation is defined by

T d
M(Z) = (ZB+ D)−1(ZA +C), (A.62)

and

dom(T d
M) =

{
Z ∈ �n×m : ∃(ZB+ D)−1

}
. (A.63)

Theorem A.26. Let M ∈ �(m+n)×(m+n). Then

X ∈ dom(T d
M) ⇔ X∗ ∈ dom(TL∗M∗L). (A.64)
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Moreover

T d
M(X) = T ∗L∗M∗L(X∗), (A.65)

where

L =

(
0 Im

In 0

)
. (A.66)

If M ∈ �(m+n)×(m+n) is a nonsingular matrix, then

TM(X) = −T d
M−1(−X). (A.67)

Proof:. A direct computation reveals that[
T d

M(X)
]∗

= (C∗+ A∗X∗)(D∗+ B∗X∗)−1 = TL∗M∗L(X∗). (A.68)

Let M and M−1 be partitioned as

M =

(
A B
C D

)
, M−1 =

(
E F
G H

)
, (A.69)

then identity (
−X In

)
M−1M

(
Im

X

)
= 0 (A.70)

implies that

(H−XF)
(
T d

M−1 (−X) In
) ( Im

TM(X)

)
(A + BX) = 0, (A.71)

provided (H−XF) and (A + BX) are nonsingular. Then(
T d

M−1(−X) In
) ( Im

TM(X)

)
= 0, (A.72)

i.e., (A.67).
It remains to prove that X ∈ dom(TM) is equivalent to −X ∈ dom(T d

M−1).
To this end consider the nonsingular matrix

T =

(
A B
C D

)(
I −X∗

X I

)
=

(
A + BX −AX∗+ B
C + DX D−CX∗

)
(A.73)
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and its inverse

T−1 =

(
I −X∗

X I

)−1 (E F
G H

)
=

=

(
(I + X∗X)−1 X∗(I + XX∗)−1

−(I + XX∗)−1X (I + XX∗)−1

)(
E F
G H

)
. (A.74)

If (A + BX) is nonsingular then from the Schur inversion formula it follows
that the right bottom block of T−1 is also nonsingular. This block equals
to (I + XX∗)−1(H − XF), hence (H − XF) is nonsingular. Analogously,
nonsingularity of (H−XF) implies the nonsingularity of A + BX.

Corollary A.27.

−T ∗M(X) = TL∗M−∗L(−X∗). (A.75)

Let us consider the composition of two Möbius transformations.

Definition A.28. Let M and N be matrices partitioned as

M =

(
A B
C D

)
, N =

(
E F
G H

)
. (A.76)

Then the composition of the transformations TM and TN is defined by

(TN ◦TM)(X) = TN(TM(X)). (A.77)

Lemma A.29.

(TN ◦TM)(X) = TN(TM(X)) = TNM(X), (A.78)

X ∈ dom(TM) and TM(X) ∈ dom(TN) (A.79)

or equivalently

X ∈ dom(TM) and X ∈ dom(TNM). (A.80)

If M is nonsingular, X ∈ dom(TM) and TM(X) = K then K ∈ dom(TM−1)
and TM−1(K) = X, i.e.,

dom(TM) = Range(TM−1). (A.81)
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A.5. Kalman-Yakubovich-Popov type results

Lemma A.30 (Robust Finsler’s lemma). Let fixed matrices Q = Q∗, W and a
compact subset of matricesH be given.

Then the following statements are equivalent:

i.) for each H ∈ H

ξ∗Qξ < 0, ∀ξ , 0, HWξ = 0. (A.82)

ii.) there exists Θ = Θ∗ such that

Q + W∗ΘW < 0, (A.83)

N∗HΘNH ≥ 0, ∀H ∈ H . (A.84)

This result is a generalization of the Finsler’s lemma. A similar, slightly
more general, result is called the full block S-procedure.

Lemma A.31. Let matrices A,B,C and Q be given, where all the matrices
except B are symmetric. Then the following statements are equivalent.

(i)There is an X such that
(

Q X
X∗ R

)
>

(
A B
B∗ C

)
. (A.85)

(ii) F = Q−A > 0 and G = R−C > 0. (A.86)

If the above statements hold all X are given as

X = B+ F1/2LG1/2, (A.87)

where L is an arbitrary contraction such that ‖L‖ < 1.

Proof:. The proof is elementary, hence it is omitted for brevity.

A.5.1. Variants of the KYP lemma

Theorem A.32 (Extended KYP lemma). Let P be a Hermitian matrix. Then(
F(δ)

I

)∗
P
(
F(δ)

I

)
≺ 0, ∀δ ∈ ∆ (A.88)

where F(δ) = D + Cδ(I − Aδ)−1B, if there exists a Hermitian multiplier Q
which satisfies
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C-1: (
A B
I 0

)∗
Q

(
A B
I 0

)
+

(
C D
0 I

)∗
P
(
C D
0 I

)
≺ 0,

C-2: (
I
δ

)∗
Q

(
I
δ

)
� 0, ∀δ ∈ ∆.

For compact ∆ one has the reverse implication, too.

Proof:. Recall the fact that δ(I−Aδ)−1 = (I−δA)−1δ and consider

G(δ) =

(
(I−δA)−1δB

I

)
. (A.89)

Then one has the identities(
I 0
A B

)
G(δ) =

(
δ

I

)
(I−Aδ)−1B (A.90)

and (
C D
0 I

)
G(δ) =

(
F(δ)

I

)
. (A.91)

Therefore from C-1 one has

((I−Aδ)−1B)∗
(
δ

I

)∗
Q

(
δ

I

)
(I−Aδ)−1B+

(
F(δ)

I

)∗
P
(
F(δ)

I

)
≺ 0. (A.92)

From C-1 it follows (A.88).
For the reverse implication let us consider that ∆ is compact.
Observe that G⊥(δ) =

(
(I−δA) −δB

)
, i.e.,

G⊥(δ)G(δ) =
(
−δ I

) (A B
I 0

)(
δ(I−Aδ)−1B

I

)
= 0. (A.93)

Then by an application of the robust Finsler’s lemma, i.e., by taking H =(
−δ I

)
and W =

(
A B
I 0

)
the assertion follows.
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Theorem A.33 (Extended KYP with transformed parameters). For a given
compact set ∆̃ let us consider a nonsingular matrix M, the corresponding
Möbius transformation TM and a set ∆ such that ∆ ⊂ dom(TM) and ∆̃ =

TM(∆).
Then (

I
F(δ)

)∗
Pp

(
I

F(δ)

)
≺ 0, ∀δ ∈ ∆ (A.94)

where F(δ) = D + Cδ(I − Aδ)−1B, if and only if there exists a symmetric
(Hermitian) multiplier P which satisfies
M-1: (

I 0
A B

)∗
P
(

I 0
A B

)
+

(
0 I
C D

)∗
Pp

(
0 I
C D

)
≺ 0, (A.95)

M-2:

P = M
∗
P̃M, with

(
δ̃

I

)∗
P̃
(
δ̃

I

)
� 0, ∀δ̃ ∈ ∆̃, (A.96)

where M =

(
0 I
I 0

)
M

(
0 I
I 0

)
.

Proof:. Recall the fact that δ(I−Aδ)−1 = (I−δA)−1δ and consider

G(δ) =

(
(I−δA)−1δB

I

)
. (A.97)

Then one has the identities(
I 0
A B

)
G(δ) =

(
δ

I

)
(I−Aδ)−1B (A.98)

and (
0 I
C D

)
G(δ) =

(
I

F(δ)

)
. (A.99)

If M is partitioned as M =

(
U V
X Z

)
by using the notation W(δ) = (U +

Vδ)−1 one has (
δ̃

I

)∗
P̃
(
δ̃

I

)
= W(δ)∗

(
δ

I

)∗
M
∗
P̃M

(
δ

I

)
W(δ). (A.100)
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It follows that with P = M
∗
P̃M one has(

δ̃

I

)∗
P̃
(
δ̃

I

)
� 0 iff

(
δ

I

)∗
P
(
δ

I

)
� 0. (A.101)

Therefore, from M-1 one has

((I−Aδ)−1B)∗
(
δ

I

)∗
P
(
δ

I

)
(I−Aδ)−1B+ (A.102)

+

(
I

F(δ)

)∗
Pp

(
I

F(δ)

)
≺ 0. (A.103)

Thus, from M-1 and M-2 follows (A.94).
For the reverse implication observe that

G⊥(δ) =
(
(I−δA) −δB

)
, (A.104)

i.e., from (A.90) one has

G⊥(δ)G(δ) =
(
I −δ

) ( I 0
A B

)
G(δ) = 0. (A.105)

Using Theorem A.26 it follows that

−δ = −TM−1(δ̃) = T d
M(−δ̃). (A.106)

Thus, one has(
−δ I

)
=

(
T d

M(−δ̃) I
)

= (A.107)

= (−δ̃V + Z)−1
(
−δ̃U + X −δ̃V + Z

)
= (A.108)

= (−δ̃V + Z)−1
(
−δ̃ I

)
M. (A.109)

It follows that G⊥(δ)ξ = 0 is equivalent to

(
I −δ̃

)
M

(
I 0
A B

)
ξ = 0 (A.110)

for all ξ.
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Since ∆̃ is compact one can apply the robust Finsler’s lemma, i.e., by

taking H =
(
I −δ̃

)
and W = M

(
I 0
A B

)
in Lemma A.30, one has that there

exist a matrix P̃ such that(
I 0
A B

)∗
P
(

I 0
A B

)
+

(
0 I
C D

)∗
Pp

(
0 I
C D

)
≺ 0, (A.111)

with P = M
∗
P̃M and (

δ̃

I

)∗
P̃
(
δ̃

I

)
� 0, ∀δ ∈ ∆̃. (A.112)

Remark A.34. In M-2 one can always take strict inequality without restrict-
ing generality.

Proposition A.33 extends the power of the S-procedure to sets that are not
bounded, however, that can be obtained as a Möbis transform of a compact
set. As an example one can obtain an easy derivation of the strict version of
the Kalman-Yakubovich-Popov lemma:

Theorem A.35 (KYP Continuous Time). Let the matrices A ∈ �n×n, B ∈
�n×m, M = MT ∈�(n+m)×(n+m) be given, with det(jωI−A) , 0 for ω ∈�.

The following two statements are equivalent:

i.) (
(jωI−A)−1B

I

)∗
M

(
(jωI−A)−1B

I

)
< 0

for all ω ∈�∪{∞}.

ii.) There exists a matrix P ∈�n×n such that P = PT and

M +

(
AT P + PA PB

BT P 0

)
< 0.

Theorem A.36 (KYP Discrete Time). Let the matrices A ∈ �n×n, B ∈ �n×m,
M = MT ∈�(n+m)×(n+m) be given, with det(ejωωI−A) , 0 for ω ∈�.

The following two statements are equivalent:

i.) (
(ejωωI−A)−1B

I

)∗
M

(
(ejωωI−A)−1B

I

)
< 0
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for all ω ∈�.

ii.) There exists a matrix P ∈�n×n such that P = PT and

M +

(
AT PA−P AT PB

BT PA BT PB

)
< 0.

Remark A.37. If (A,B) is controllable the corresponding equivalence also
holds for non-strict inequalities.

The discrete-time version of the lemma can be obtained by the compact-
ness of the unit circle while the continuous-time version follows from the
fact that the imaginary line is a Möbius transform (Cayley-transform) of the
unit circle.
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