© Typotex Kiadd
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Appendix

A.l. Basic facts

It is convenient to introduce some notation for symmetric and Hermitian
matrices. A real matrix A is symmetric if A = A”. The sets of all nxn
symmetric matrices will be denoted by $”. A complex matrix is Hermitian
ifA=A"=A" where the bar denotes the complex conjugate of each entry in
A. The sets of all n x n Hermitian matrices will be denoted by H".

Definition A.1. Let A be an arbitrary matrix. A, denotes a matrix with the
following properties.

Ker(A,)=Im(A) and A,A* >0, (A1)

or with other words A’} is an arbitrary basis matrix in Ker (A™).

Note that A, exists if and only if A has linearly dependent rows. Also
note that, for a given A is not unique, but throughout this paper, any choice
is acceptable. And finally, it is obvious that A A = 0, this latter property
Justifies our notation.

Definition A.2. Let A be an arbitrary matrix. A, denotes arbitrary basis
matrix in Ker (A). Note that A, exists if and only if A has linearly dependent
columns. It is obvious that AA, = 0 and that A%A, > 0.

A.1.1. The Moore-Penrose Pseudo-inverse

Definition A.3. The pseudo-inverse A" of an mx n matrix A (whose entries
can be real or complex numbers) is defined as the unique n X m matrix
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satisfying all of the following four criteria:

AATA=A (A.2)

ATAAT = AT (A3)

(AAT)* = AAT (A4)

(ATA) = ATA (A.5)

Properties:

AT exists and is unique for any matrix A. (A.6)
If A is invertible then AT = A7!. (A7)
A" of a zero matrix is its transpose. (A.8)
AH" = A. (A.9)
(@A) =a'AT for a#0. (A.10)
AA" ortho gonal projector ontoIm (A). (A.11)
ATA orthogonal projector ontoIm (A™). (A.12)
- ATA) orthogonal projector onto Ker (A). (A.13)
ker(AT) = (Im(A))*. (A.14)
im(A") = (Ker (A))*. (A.15)

If the columns of A are linearly independent, then A*A is invertible and:
AT =(A*A)'A* case m>n.

It follows that AT is a left inverse of A, i.e., ATA =I.
If the rows of A are linearly independent, then AA* is invertible and:

AT = A*(AA")' case m<n.

It follows that AT is a right inverse of A, i.e., AAT=1.

A.1.2. Singular value decomposition

Theorem A.4 (SVD). Suppose A is an m X n matrix whose entries come from
the field IF, which is either the field of real numbers or the field of complex
numbers. Then there exists a factorization of the form

A=UZV",
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where U is an m X m unitary matrix over F, the matrix X is m X n diagonal
matrix with nonnegative real numbers on the diagonal, and V* is an n X
n unitary matrix over IF. Such a factorization is called a singular-value
decomposition of A. A common convention is to order the diagonal entries
Y, i in non-increasing fashion. In this case, the diagonal matrix X is uniquely
determined by A (though the matrices U and V are not). The diagonal entries
of X are known as the singular values of A. More precisely T has the form

X =diag(c1,02,...,0))
where p = min(m,n) and
0'120'22...20'[,20

Remark A.5 (Pseudo-inverse). The singular value decomposition can be
used for computing the pseudo-inverse of a matrix. Indeed, the pseudo-
inverse of the matrix A with singular value decomposition A = ULV* is

At =vziur,
where X' is the pseudo-inverse of X with every nonzero entry replaced by
its reciprocal.
A.1.3. Schur complement and Schur lemma

Lemma A.6 (Schur Decomposition). Suppose A or D respectively is non
non-singular. Then

A B\ (I 0)A 0 I A™'B
c D) \cA™' 1)\0 D-cA™'BJ\0 I

A B\ (1 BD)\(A-BD'C 0\( I 0
c b \o I 0 DI\D7'C 1

Lemma A.7 (Schur Lemma). Let Q and R be symmetric matrices. The
following are equivalent.

or

(SQT ;)zo, (A.16)
R>0, Q-SR'ST>0, SU-RR")=0 (A.17)
0>0, R-STQ's>0, I-00NHS=0 (A.18)
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Lemma A.8 (Symmetric Schur Lemma). Let Q and R be symmetric matri-
ces. The following are equivalent.

(SQT fe)>o, (A.19)
R>0, QO-SR!'ST>o. (A.20)
0>0, R-STQ7's>o0. (A.21)

We note that the equality S (1 —RR") =0 is redundant since R = R~
Lemma A.9. Suppose that I — AB is nonsingular. Then

AI-BA) '=U-AB)'A

Lemma A.10 (Matrix Inversion Lemma). Let A, C and D™' + CA~'B be non-
singular. Then

(A+BDC) ' =A"'-A"'BDD ' +cA7' B Ica.
Suppose A and D are both non-singular. Then

(A-BD'O)y'=A""+A'B(D-cA7'B)Ica.

A B
(e o)
Let us suppose that M is non-singular. Moreover, suppose A or D respec-
tively is non-singular and let V.=D—CA™'B or W =A—BD™'C. Then

(A B)‘1 _ (A—‘ +A-'BY-lCA™! —A—‘Bv—l)

C D -v-lca-! %
or ’
A B\ _( w -w='BD™!
¢ D] “\-D'c¢cw! D'+D'cw'BD!
If M, A and D are all non-singular then
A B\"' [ (A-BD0)! “A"'B(D-CA"'B)"!
Cc D] “\-(b-cA'B'ca! (D-CA™'B)!
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A.1.4. Inertia

Definition A.11. The inertia of a Hermitian P € R™" is defined as

in(P) = (in—(P),ing(P),in4(P)) (A.22)

with in_(P), ing(P), in.(P) denoting the number of negative, zero and
positive eigenvalues of P. Moreover, for any subspace S C R" the inertia
in(P|s) is defined by in(S*PS), where S is an arbitrary basis matrix of S.

Example A.12. Consider P = ( 0 1 ) and a (maximal) negative subspace
16

S = (;) However, its complementary subspace S* = (_12) is also a

2 1
“1+1/4 2+1/8
2+1/8 —4+1/16

(maximal) negative subspace! As it is expected ( ) is not a negative

subspace, since the eigenvalues of ( ) are of different

sign.
But S8* is a positive subspace of P~".

Lemma A.13 (Inertia Lemma). If A is nonsingular then

in ( g* g) = in(A)+in(B—C*A™'C). (A.23)

Lemma A.14 (Dualization Lemma). Let P be a non-singular symmetric ma-
trix in R™" and let U and <V be two complementary subspaces with U&V =
R”. Then
x' Px <0 for all x e U\{0} and x" Px >0 for all x eV (A.24)
is equivalent to
TP x> 0 for all x € U*+\{0} and TP lx< Oforall xe V*-. (A.25)

An other formulation: let S be a subspace with ing(P|s) = 0. Then

in(P) = in(P|s) +in(P~'|sv). (A.26)
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o L

Example A.15. Consider P = (
16

) and a (maximal) negative subspace

1 -2
S = (2) However, its complementary subspace S+ = ( 1 ) is also a

2 1
—1+1/4 2+1/8
2+1/8 —-4+1/16

(maximal) negative subspace! As it is expected ( ) is not a negative

subspace, since the eigenvalues of ( ) are of different

sign.
But S8* is a positive subspace of P~".
A.2. Extensions of positive definite matrices

Lemma A.16. Let the matrix P be partitioned as

A X
P:(X* B) (A.27)

where A > 0 and B> 0. Then P > 0 if and only if X = AY?KB'/?, where
[IK|| < 1.

Proof:. The matrix P is similar to the matrix

A2 0 \(A Xx\(A7'?2 0 1Y
( 0 B2 (x* B( 0 B2 =(Y* 1) (A.28)
with Y = A~12XB~1/2_ Inequality
(; §)>0 (A.29)

is equivalent to / — YY" > 0 and I — Y*Y > O which means that ||Y|| < 1.
Consequently P > 0 if and only if IB12X*A~12|| < 1,ie., X =AY2KB/2,
where K is an arbitrary contraction (J|K|| < 1).

Lemma A.17. Let the matrix P be partitioned as

A X
P=(x* B). (A30)

If A > 0 is given, X is arbitrary, B> 0 and B > X*A~'X then P is positive
definite.
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Proof:. Using the Schur complement, we have that A >0, B> 0 and B -
X*A~'X > 0 which implies that P > 0.

Theorem A.18. [Positive definite extension] Let X > 0 and Y > 0 be given.
Then there exists a positive definite matrix P that satisfy

X M 1 Y N
P_(M* Y) and P _(N* I_’)’ (A.31)
if and only is
X I
(I Y) >0. (A.32)

If the existence condition is satisfied, all such extensions are given as

X720\ 1 KU(XY? 0
P:(O XI/Z)(K* I)(O Xl/z] (A.33)

with an arbitrary X > 0 and a contraction K determined by the condition
KK*=1-X"12y-1x71/2, (A.34)

Hence, the dimension of the minimal extension is given by

ny.y = rank(X — Y1) = rank ()I( II/) (A.35)

Proof:. The assertion is a direct consequence of the matrix inversion lemma.
. . <1
With the notation W = X — MX M* we have that Y = W~! and

(X M)“_ Wl —woimx B
M X X 'mww! XX mewimx !

w0 I 0 ( 0 _W—l) I 0 (A36)
= _ =+ _ [ . .
o x ') o x'm)\-wt w0 mx
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From Lemma A.16 follows the equality M = X 1/ zK)_(l/z. The expressions
for M,N and Y can be obtained by direct computation:

M=x"7kx" (A.37)
N=-vx"2kX "? = —ymx ' = —x 20 -kkH'kX 7, (A38)
Y=(X-MX M) =x2(1- KK X2, (A.39)
7=X "|1+k'u-KkK)K|X (A.40)

The matrix P! can be expressed as

-1 (I-KK*)™! ~(I-KK*)'K
with
X—I/Z 0
W= =12 A42
(0 Xl/z) (A42)
or as
Y 0 (I 0 Yo -¥\(I 0
-1 _
g _(0 ?_])Jr(o )‘(“M*)(—Y Y)(O MX“)' (A43)

Remark A.19. If one has strict inequality in (A.32) it follows that we have
I = X'2LY'Y2 with a suitable contraction ||L|| < 1, i.e., X~ V/? = LY'/2.
Then (A.39) reveals that | - KK* = LL*.

A.3. Variable elimination

Lemma A.20 (Finsler’s Lemma). Let x € R?, P = P* € R™" and V € R™"
with r = rank(V) < n. Then the following are equivalent

(1) P<0 on Ker(V) (A.44)
2) (V)IPV,<0 on R (A.45)
(3) ueR:P-uV'v<0 on R" (A.46)
(4) AXeR™:P+XV+VIXT <0 on R" (A.47)

www.interkonyv.hu © Bokor Jozsef, Gaspar Péter, Szabo Zoltan



© Typotex Kiadd

A.3. Variable elimination 263

Inequality (3) can be replaced by the variant
(3p) AX=XTeR™9:P+VIXV<0 on R (A.48)

Remark A.21. Inequality (4) can be also written in the form

T
P+ (‘I/) ()?T }5)({/) <0, (A.49)
and also in the form
T
T D)o a0
Lemma A.22 (Projection Elmma). For arbitrary A, B and a symmetric P, the
LMI
P+AXB+(AXB)" <0 (A51)

in the unstructured X has a solution if and only if
A*x=0 or Bx=0 imply x'Px<0 or x=0. (A.52)
The conditions above are equivalent to
A, PA} <0 and B,PB,<0. (A.53)

Remark A.23. Inequality (A.51) can be also written in the form

AT\ (0 x)\(AT
(S )<o ash

and also in the form

T
1\ o1\ 1
(AXB) (1 O)(AXB)<O' (A.39)

Inequalities in (A.53) can also be formulated as (A*) P(A*); < 0 and
(B*) P(B")]| <0, respectively.
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Lemma A.24 (Elimination Lemma). Let Q = QT non-singular with in(Q) =
(m,0,n) and let us consider the quadratic matrix inequality

oy I
( C+AXB ) Q( C+AXB )<0' (A.56)

Here C is of dimension n X m. This inequality has a solution if and only if

T
BZ( é ) Q( é )B4<O (A.57)
and
_CT T _CT
Al( / ) Q—l( 1 )A{>0. (A.58)

A.4. The Mobius transformation

Definition A.25. Let M € F"+Wxm+n) (E = R or C) be partitioned as

A B
M:(C D)' (A.59)

The Mobius transformation Ty is defined by the equation
Tu(X) = (C+DX)(A+BX)™! (A.60)
for X e F™™ where (A + BX)™! exists. Denote by
dom(Ty) = {X e F™" : 3(A+BX)™"| (A.61)

the domain of Ty.
The dual Mobius transformation is defined by

T4(Z)=(ZB+ D) (ZA+0), (A.62)
and
dom(Ty) = {Z e F™™" : A(ZB+D)™'}. (A.63)
Theorem A.26. Let M € F0Wxm+n)  Thep

Xedom(T¢) & X" edom(Trpep). (A.64)
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Moreover
THX) =Ty (X, (A.65)
where
0 I,
L_(I,, O)' (A.66)

If M € FUmmxXmtn) g q nonsingular matrix, then
Tu(X)=-T¢  (-X). (A.67)
Proof:. A direct computation reveals that
[T[‘f,,(X)]* = (C*+A*X)D* + B*X") " = Trep1.(X). (A.68)

Let M and M~! be partitioned as

(A B 4 _[E F
e ) () a
then identity
(—X I)M—‘M In) _ (A.70)
n X .

implies that

In

(H-XF)(T%.(-X) 1) (TM e

)(A+BX) =0, (A1)

provided (H — XF) and (A + BX) are nonsingular. Then

d _ Im —
(T4 (=X) In)(TM(X))_O, (A.72)

i.e., (A.67).
It remains to prove that X € dom(7,) is equivalent to —X € dom(TI‘f/rl).
To this end consider the nonsingular matrix

A B\(I -X*\_(A+BX -AX"+B
T_(C D)(X 1 )_(C+DX D—CX*) (A.73)
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and its inverse

-1
(I =-x*\ (E F\_
(e 7) 6 5)-
_( I+XX)™! X*(I+XX*)‘1)(E F)

“\-u+xxH'x dJ+xx)' \G H (A74)

If (A + BX) is nonsingular then from the Schur inversion formula it follows
that the right bottom block of 77! is also nonsingular. This block equals
to (I + XX*)"'(H — XF), hence (H — XF) is nonsingular. Analogously,
nonsingularity of (H — XF) implies the nonsingularity of A + BX.

Corollary A.27.
~T3(X) =Trp—+(=X"). (A.75)

Let us consider the composition of two Mobius transformations.

Definition A.28. Let M and N be matrices partitioned as

A B E F
we(t B w5 10

Then the composition of the transformations Ty and Ty is defined by

(Tn o Tm)(X) = TN(Tu(X)). (ATT)
Lemma A.29.
(Ty o Ts)(X) = Tn(Tu(X)) = Tnm(X), (A.78)
Xedom(Ty) and Ty(X)e€dom(Ty) (A.79)
or equivalently
Xedom(Ty) and X edom(Typy). (A.80)

If M is nonsingular, X € dom(Tyy) and Ty (X) = K then K € dom(T;-1)
and Ty-1(K) =X, i.e,

dom(T's) = Range(T'y;-1). (A.81)
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A.S5. Kalman-Yakubovich-Popov type results

Lemma A.30 (Robust Finsler’s lemma). Let fixed matrices Q = Q*, W and a
compact subset of matrices H be given.
Then the following statements are equivalent:

i.) foreach H € H
E0E<0, YE£0, HWE =0. (A.82)
ii.) there exists ® = @ such that

0+ W*OW <0, (A.83)
NONy >0, VHeH. (A.84)

This result is a generalization of the Finsler’s lemma. A similar, slightly
more general, result is called the full block S-procedure.

Lemma A.31. Let matrices A,B,C and Q be given, where all the matrices
except B are symmetric. Then the following statements are equivalent.

. . 0 X A B
(i) There is an X such that (X* R) > (B* C)' (A.85)
(i) F=Q-A>0 and G=R-C>0. (A.86)

If the above statements hold all X are given as

X =B+F'’LG'?, (A.87)
where L is an arbitrary contraction such that ||L|| < 1.
Proof:. The proof is elementary, hence it is omitted for brevity.

A.5.1. Variants of the KYP lemma
Theorem A.32 (Extended KYP lemma). Let P be a Hermitian matrix. Then

(F 55)) P(F 55)) <0, VSeA (A.88)

where F(8) = D+ CS(I — AS)™'B, if there exists a Hermitian multiplier Q
which satisfies
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C-1:

A B\" (A B\ (C D\ [(C D
[ o) et O)+6 7) el 7)o

([ ofl)-o. wea

For compact A one has the reverse implication, too.

Proof-. Recall the fact that §( — A5)™' = (I —5A)~'6 and consider

G(5) = ((1 B &})_153 ) (A.89)
Then one has the identities
(i 2)0(5) = (‘;) (I-A5)'B (A.90)
and
(g ? ) G(6) = (F 56)). (A91)

Therefore from C-1 one has

(I-A8)~'B)* ((Is) Q((IS) (I1-A8)"'B+ (F ;5)) P(F 56)) <0. (A.92)

From C-1 it follows (A.88).
For the reverse implication let us consider that A is compact.
Observe that G, (8) = ((I-6A4) —0B).ie.,

-1
A B)((S(I—Ad) B) 0. (A.93)

GL(6)G©)=(-6 1) ( JE /

Then by an application of the robust Finsler’s lemma, i.e., by taking H =

(—6 1 ) and W = (1;‘ g) the assertion follows.
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Theorem A.33 (Extended KYP with transformed parameters). For a given
compact set A let us consider a nonsingular matrix M, the corresponding
Mobius transformation Ty and a set A such that A C dom(Tys) and A=
Ty (A).

Then

I\ I
(F(&)) P”(F(ci))<0’ YoeA (A.94)

where F(8) = D+ C8(I — A6)™'B, if and only if there exists a symmetric
(Hermitian) multiplier P which satisfies

M-1:
I 0o\ (I 0\ (0 I\ . (0 I
(A B) P(A B)+(C D) p,,(c D)<o, (A.95)
M-2:
— 8\ <[5 -~
P=M PM, with (1) P(I)EO, Vo €A, (A.96)
— (0 I 0 1
whereM—(I O)M(I 0).

Proof-. Recall the fact that (1 — A5)~' = (I —5A)~'6 and consider

-1
G(6):((1 “”;) 53). (A.97)
Then one has the identities
I OG6—61A6‘IB A.98
4 p|CO=|,|I-A% (A.98)
and
0 I I
(c D)G(é):(F(é)). (A.99)

If M is partitioned as M = (g ;) by using the notation W(5) = (U +

V&)~! one has

(5) P(‘;) = W) ((;) M*PM(‘;) W(o). (A.100)
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It follows that with P = M PM one has
5\ ~ (6 o (6\ (6
(1) P(z) > 0iff (I) P(z) - 0.
Therefore, from M-1 one has

((I—Aa)—‘B)*(‘;) P((;)(I—A(S)“B+

I\ I
. (F @) P, (F (5)) <0,

Thus, from M-1 and M-2 follows (A.94).
For the reverse implication observe that

G.(0) = ((1 —6A) —53) ,

i.e., from (A.90) one has

GL(O)G©O) =(I -0) ( i g

)G(é) =0.
Using Theorem A.26 it follows that
~§ = —Ty1(8) = T4 (=9).

Thus, one has

(-6 1)=(14-d) I)=
=(-3V+2) (-3U+X —V+Z)=
=(=v+2)' (-5 I)M.

It follows that G, (6)¢ = 0 is equivalent to
a—(I 0
(1 —5)M(A B)g =0

for all &.
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www.interkonyv.hu © Bokor Jozsef, Gaspar Péter, Szabo Zoltan



© Typotex Kiadd

A.5. Kalman-Yakubovich-Popov type results 271

Since A is compact one can apply the robust Finsler’s lemma, i.e., by

taking H = (I —5) and W = ﬁ(j‘ g) in Lemma A.30, one has that there

exist a matrix P such that

I o\ (1 0\ (0 I\ (0 I

(A 3) P(A B)+(C D) P,,(C D)<0, A1)
with P = M PM and

(‘;) P(‘Is) >0, VéeA. (A.112)

Remark A.34. In M-2 one can always take strict inequality without restrict-
ing generality.

Proposition A.33 extends the power of the S-procedure to sets that are not
bounded, however, that can be obtained as a Mobis transform of a compact
set. As an example one can obtain an easy derivation of the strict version of
the Kalman-Yakubovich-Popov lemma:

Theorem A.35 (KYP Continuous Time). Let the matrices A € R™", B €
R™™ M = MT € R"X04m) be given, with det(jwl — A) # 0 for w € R.
The following two statements are equivalent:
i)
. _ _l * . _ _1
(GwI-A)"'B M(]wl A)'B <0
1 1
for all w € RU {co}.
ii.) There exists a matrix P € R™" such that P = PT and
ATP+PA PB
M ( BTPp 0 ) <0.

Theorem A.36 (KYP Discrete Time). Let the matrices A € R™", B € R™™,
M = MT e RHMX0m) po aiven, with det(el”wl — A) # 0 for w € R.
The following two statements are equivalent:

i)

((ej“’a)l ;A)-IB)* M((ej“’wl ; A)-IB) -0
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forall w e R.

ii.) There exists a matrix P € R™" such that P = PT and

ATPA-P ATPB
M ( BTPA BTPB) <0
Remark A.37. If (A, B) is controllable the corresponding equivalence also
holds for non-strict inequalities.

The discrete-time version of the lemma can be obtained by the compact-
ness of the unit circle while the continuous-time version follows from the
fact that the imaginary line is a Mobius transform (Cayley-transform) of the
unit circle.
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