Notations and symbols

	-
\mathbb{F}	a field, usually the field of real (\mathbb{R}) or complex (\mathbb{C}) numbers.
\mathbb{F}^k	k-vectors, over F .
$\mathbb{F}^{m \times n}$	$m \times n$ matrices over F .
$\operatorname{Re}(z), \operatorname{Im}(z)$	real and imaginary part of $z \in \mathbb{C}$.
$\lambda(A)$	eigenvalue of the matrix A.
$\rho(A)$	spectral radius of the matrix A.
$\overline{\sigma}(A)$	largest singular value of the matrix A.
$\underline{\sigma}(A)$	smallest singular value of the matrix A.
S ⁿ	the symmetric $n \times n$ matrices over \mathbb{R} .
\mathbb{H}^n	the Hermitian $n \times n$ matrices over \mathbb{C} .
I_k	the $k \times k$ identity matrix.
M^T	transpose of a matrix M.
M^*	complex-conjugate transpose of a matrix M.
in(A)	the inertia of a symmetric matrix A.
M^\dagger	the Moore-Penrose pseudoinverse of a matrix M.
$\mathbf{Im}(M)$	the image of a matrix <i>M</i> .
$\operatorname{Ker}(M)$	the kernel of a matrix M.
M_{\dashv}	a matrix whose columns form a basis of Ker (M).
M_{\perp}	M^*_{\perp} is an arbitrary basis matrix in Ker (M^*).
\mathcal{U}^{\perp}	the orthogonal complement of a subspace \mathcal{U} .
A > 0 or A > 0	the symmetric matrix A is positive or negative definite.
$A \ge 0 \text{ or } A \le 0$	the symmetric matrix A is positive or negative semi-definit.
A > 0	A and B are symmetric matrices and $A - B > 0$.
$A^{rac{1}{2}}$	for $A > 0$ the unique $Q = Q^T$ such that $Q > 0$ and $Q^2 = A$.
$\mathbf{tr}(A)$	the trace of a symmetric matrix A.
det (<i>A</i>)	the determinant of a symmetric matrix A.
$\lambda(A)$	the set of all eigenvalues of a square matrix A.
M	the spectral or $\ .\ _2$ norm of a vector or matrix M .
$\langle x, y \rangle = x^T y$	the standard scalar product of the vectors $u, v \in \mathbb{F}^n$.
$\mathcal{L}(\mathcal{U},\mathcal{V})$	the vector space of the $\mathcal{U} \to \mathcal{V}$ linear maps.